Расскажи друзьям!

Гармоническое колебательное движение и волны

12.21. Амплитуда гармонических колебаний материальной точки А = 2 см, полная энергия колебаний W = 0,3 мкДж. При каком смещении x от положения равновесия на колеблющуюся точку действует сила F = 22,5 мкН?

12 22. Шарик, подвешенный на нити длиной l = 2 м, отклоняют на угол a =и наблюдают его колебания. Полагая колебаниянезатухающими гармоническими, найти скорость шарика при прохождении им положения равновесия. Проверить полученное решение, найдя скорость шарика при прохождении им положения равновесия из уравнений механики.

12.23. К пружине подвешен груз массой m = 10кг. Зная, что пружина под влиянием силы F = 9,8 Н растягивается на l = 1.5 см, найти период Т вертикальных колебаний груза.

12.24. К пружине подвешен груз. Максимальная кинетическая энергия колебаний груза WKma = 1 Дж. Амплитуда колебаний A = 5 см. Найти жесткость к пружины.

12.25. Как изменится период вертикальных колебаний груза, висящего на двух пружинах, если от последовательного соединения пружин перейти к параллельному их соединению?

12.26. Медный шарик, подвешенный к пружине, совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый такого же радиуса?

12.27. К пружине подвешена чашка весов с гирями. При эгом период вертикальных колебаний T1 = 0,5 с. После того как на чашку весов положили еще добавочные гири, период вертикальных колебаний стал равным T2 =0,6 с. На сколько удлинилась пружина от прибавления этого добавочного груза?

12.28. К резиновому шнуру длиной l = 40см и радиусом r = 1мм подвешена гиря массой m = 0,5 кг. Зная, что модуль Юнга резины Е = 3 МН/м2, найти период Т вертикальных колебаний гири. Указание: учесть, что жесткость kрезины связана с модулем Юнга Е соотношением к = SE/l, где S - площадь поперечного сечения резины, l — ее длина.

12.29. Ареометр массой m= 0,2 кг плавает в жидкости. Если погрузить его немного в жидкость и отпустить, то он начнет совершать колебания с периодом Т = 3,4 с. Считая колебания незатухающими, найти плотность жидкости p, в которой плавает ареометр. Диаметр вертикальной цилиндрической трубки ареометра d = 1 см.

12.30. Написать уравнение движения, получающегося в результате сложения двух одинаково направленных гармонических колебательных движений с одинаковым периодом T = 8с и одинаковой амплитудой А = 0,02 м. Разность фаз между этими колебаниями φ2 - φ1 = P/4 . Начальная фаза одного из этих колебаний равна нулю.

12.31. Найти амплитуду А и начальную фазу φгармонического колебания, полученного от сложения одинаково направленных колебаний, данных уравнениями х1 = 0,02 х

2.32. В результате сложения двух одинаково направленных гармонических колебаний с одинаковыми амплитудами и одинаковыми периодами получается результирующее колебание с тем же периодом и той же амплитудой. Найти разность фаз φ21 складываемых колебаний.

12.33. Найти амплитуду А и начальную фазу φгармонического колебания, полученного от сложения одинаково направленных колебаний, данных уравнениями x1 = 4 sinPсм и х2 = sin(Pt+P/2). Написать уравнение результирующего колебания. Дать векторную диаграмму сложения амплитуд.

12.34. На рис. 1 дан спектр результирующего колебания. Пользуясь данными этого рисунка, написать уравнения колебаний, из которых составлено результирующее колебание, Начертить график этих колебаний. Принять, что в момент t = 0 разность фаз между этими колебаниями φ2-φ1 = 0. Начертить график результирующего колебания.

12.35. Уравнения двух гармонических колебаний имеют вид x1=3sin 4Pt см и х2 = 6sin10Pt см. Построить график этих колебаний. Сложив графически эти колебания, построить график результирующего колебания. Начертить спектр результирующего колебания.

12.36. Уравнение колебаний имеет вид х = Asin2Pv1t, причем амплитуда А изменяется со временем по закону А = A0(1 + cos2Pv2t). Из каких гармонических колебаний состоит колебание? Построить график слагаемых и результирующего колебаний для А0 = 4 см, v1 = 2 Гц, v2 = 1 Гц. Начертить спектр результирующего колебания.

12.37. Написать уравнение результирующего колебания получающегося в результате сложения двух взаимно перпендикулярных колебаний с одинаковой частотой v1 = v2 = 5 Гц одинаковой начальной фазой φ1=φ2=P/3. Амплитуды колебаний равны A1 = 0,10 м и Аг = 0,05 м.

12.38. Точка участвует в двух колебаниях одинакового пер" ода с одинаковыми начальными фазами. Амплитуды кол-бан'111 равны А, =3см и А, =4 см. Найти амплитуду А р->> льтирУ юшего ко.теоания, если колсоання совершаются: а) в ■ iU-правлении; б) в двух взаимно перпендикулярных паи.:л;:ях-

12.39. Точка участвует в двух взаимно перпендикулярных колебаниях х = 2sinwt м и у = 2 cos wt м. Найти траекторию результирующего движения точки.

12.40. Точка участвует в двух взаимно перпендикулярных колебания x=cosPtи y = cos P/2 t. Найти траекторию результиующего движения точки и начертить ее с нанесением масштаба.