Характеристики радиотелецентров

ПЛАН

Введение…………………………………………... ………..1

Расчет напряженности поля УКВ………………... ………..1

Расчет напряженности поля в окрестностях ИОРТПЦ…..3

Приложение 1………………………………………………..4

Приложение 2………………………………………………..5

ВВЕДЕНИЕ

Важной характеристикой радиотехнических систем, на основе которой устанавливаются санитарно-защитные зоны (СЗЗ) радиотехнических объектов, зоны ограничения застройки, а также зоны обслуживания объектов, является напряженность поля радиоволн УКВ диапазона. Эта характеристика очень важна для решения вопросов проектирования и эксплуатации радиотелепередающих цетров.

В настоящее время в геометрической прогрессии растет число передатчиков УКВ и СВЧ диапазонов, используемых в радио- и телевещании, для спутниковой, сотовой связи. В таких условиях особый интерес вызывают вопросы электромагнитной экологии. Источниками электромагнитных полей, создаваемых человеком, являются также персональные компьютеры, СВЧ-печи, телевизоры и другие бытовые приборы. В результате увеличилось количество зон повышенной опасности, в которых значения напряженности поля существенно выше фоновых. Возросли и сами фоновые уровни электромагнитных полей.

В связи с этим были установлены предельно допустимые уровни электромагнитного поля – ПДУ. Было доказано отрицательное влияние достаточно интенсивного электромагнитного поля на организмы людей.

В данной работе была поставлена цель - выяснить, не превышают ли значения напряженности поля в окрестностях иркутского областного и усольского радиотелепередающих центров предельно допустимых уровней. Для анализа результатов измерений было разработано программное обеспечение для расчетов напряженности поля, позволяющее учитывать диаграммы направленности антенн различного назначения. В результате можно определить зону обслуживания радиотелепередающего центра для заданной чувствительности приемников, а также санитарно-защитную зону объекта.

РАСЧЕТ НАПРЯЖЕННОСТИ ПОЛЯ УКВ.

Имеется однородная непоглащающая среда, относительная диэлектрическая проницаемость которой равна единице. В нее помещен воображаемый точечный излучатель, равномерно излучающий радиоволны во всех направлениях.

Определим плотность потока энергии (вектор Пойнтинга) на расстоянии r от источника радиоволн, обозначив через Р1 излучаемую источником мощность. Будем основываться на том, что излучаемая энергия равномерно распределяется по поверхности сферы радиуса r.

В реальных условиях изотропные излучатели, конечно, не применяются, а используются антенны, обладающие направленным действием.

Предложим, что рядом расположены направленная А и изотропная В антенны. Изотропная антенна, как и следовало ожидать, обладает круговой диаграммой направленности

Если обе антенны излучают одинаковые мощности Р1, то ясно, что в пункте приема, который достаточно удален от антенн и на который ориентирована направленная антенна, большая напряженность поля создается от направленной антенны, так как она концентрирует излучаемую энергию в желаемом направлении. Будем постепенно увеличивать подводимую к изотропной антенне мощность до тех пор, пока она не создаст такое же поле, что и направленная антенна. Множитель D1, показывающий, во сколько раз следует увеличить мощность, подводимую к изотропной антенне, чтобы она создавала такую же напряженность поле, что и направленная, носит название коэффициента направленности или коэффициента усиления.

Поэтому, направленная антенна по создаваемой ею в месте приема напряженности поля эквивалентна изотропной антенне, которая излучает в D1 раз большую мощность.

Очень долго условия распространения волн было принято оценивать напряженностью электрического поля, создаваемого передатчиком в месте приема. Такой критерий был более или менее оправдан в условиях, когда радиосвязь осуществлялась в диапазоне длинных, средних и, частично, коротких волн. Степень направленности антенны характеризуется ее коэффициентом направленности D (или усилением) по отношению к изотропному излучателю коротких волн. В связи с широким применением в последние годы диапазона УКВ более рационально характеризовать условия приема мощностью, создаваемой на входе приемного устройства, ибо чувствительность современных приемных устройств принято выражать мощностью на входе, требуемой для уверенного приема сигналов. Для этого необходимо знать направленной антенны D2. Однако это обстоятельство не ограничивает область применения такого метода, так как направленность передающей антенны D1 также должна быть известна. Наконец, чтобы исключить конкретные типы антенн, можно предположить, что обе антенны изотропны, т. е. D1= D2= 1.

Наглядное представление о распределении энергии волн дает амплитудная характеристика направленности, определяемая зависимостью амплитуды напряженности создаваемого антенной поля от направления в пространстве. Направление определяется азимутальным (j) и меридиональным (q) углами сферической системы координат. При этом поле измеряется на одном и том же (достаточно большом) расстоянии r от антенны и предполагается, что потери в среде отсутствуют. Графическое изображение характеристики направленности называют “диаграммой направленности”.

Направленное действие антенны часто оценивают по углу раствора диаграммы направленности, который также называют шириной диаграммы. Под шириной 2q0,5 диаграммы (главного лепестка) подразумевают угол между направлениями, вдоль которых напряженность поля уменьшается в раз, по сравнению с напряженностью поля в направлении максимума излучения, а поток мощности соответственно уменьшается вдвое. В некоторых случаях под шириной 2q0 подразумевают угол между направлениями (ближайшими к направлению максимума), вдоль которых напряженность поля равна нулю.

Коэффициент направленного действия в направлении максимального излучения для реальных антенн достигает значений от единиц до многих тысяч. Он показывает тот выигрыш в мощности, который можно получить за счет использования направленного действия антенны, но он не учитывает возможных потерь в направленной антенне.

Для суждения о выигрыше, даваемом антенной, при учете как ее направленного действия, так и потерь в ней служит параметр, называемый коэффициентом усиления антенны. Он равен произведению КНД на к.п.д.:

Таким образом, коэффициент усиления показывает, во сколько раз нужно уменьшить (или увеличить) мощность, подводимую к направленной антенне, по сравнению с мощностью, подводимой к идеальной ненаправленной антенне без потерь, для того чтобы получить одинаковую напряженность поля в рассматриваемом направлении. Если не делается специальных оговорок, то под коэффициентом усиления (так же, как и под коэффициентом направленного действия) подразумевается его максимальное значение, соответствующее направлению максимума диаграммы направленности.

Расчеты действующих значений напряженности выполняются по методике [2] при задании излучаемых мощностей, КНД и нормированных ДН передающих антенн в вертикальной и азимутальной плоскостях. При этом учитываются уровни боковых лепестков ДН, а также рельеф местности и высоты зданий.

При проектировании и эксплуатации современных радиотехнических объектов важно учитывать ПДУ воздействия электро-магнитных полей (ЭМП) на здоровье людей. В таблице 1 приведены значения ПДУ для некоторых частот.

Таблица 1

Частота МГц

48,4

88,4

192

300

ПДУ, в/м

5,0

4,0

3,0

2,5

РАСЧЕТ НАПРЯЖЕННОСТИ ПОЛЯ В ОКРЕСТНОСТЯХ ИОРТПЦ

Напряженность поля для каждого из передатчиков ИОРТПЦ, всего их семь, рассчитывает компьютерная программа, написанная на языке TURBO PASCAL 7.0. Программа разработана таким образом, что в нее входит четыре типа антенн: первый тип – антенная решетка с коэффициентом b, равным 2p; второй тип – антенная решетка с коэффициентом b, равным 1.3p; третий тип антенны – это полуволновой вибратор; четвертый тип определяет сам пользователь – вводит формулу функции F(a) для конкретной антенны. В программу вводятся исходные данные: мощность P в кВт; коэффициент усиления передающей антенны D; высота фазового центра от основания опоры Н в м; R- расстояние от фазового центра опоры до точки наблюдения с высотой h от основания опоры, в м и количество точек, где были проведены измерения напряженности поля. Затем программа производит расчет и выводит на экран систему координат, где строится график зависимости напряженности поля, в мкВ/м, от расстояния, в км. Мы видим, что с увеличением расстояния от ретранслятора график убывает, а также на графике могут быть видны незначительные скачки излучения напряженности поля, это зависит от рельефа рассматриваемой местности. На некоторой высоте, где установлен передатчик, находится щит, который снижает излучение передатчика до некоторого расстояния r < 300 м. Так как в этом радиусе расположен пункт слежения за радио и телевещанием.

По этому способу произведем расчет напряженности поля вблизи зоны Усольского радиотелецентра. В данном случае используется антенна типа 3-х элементный волновой канал с круговой поляризацией, направленная на город.

Данные измерения напряженности поля указаны в таблице 2. Как мы видим, с увеличением расстояния от ретранслятора напряженность поля убывает. На графике максимальное расстояние 18 км.

Таблица 2

Расстояние от ретранслятора, км

Напряженность поля, мкВ/м

Расчетные данные

Экспериментальные данные

2

4741,5

4466

2,4

3209,2

19952

2,5

2992

12590

4

1237,1

12045

5

767,9

3183

5,5

648

3980

6

537,8

2089

7

397,5

1351

8

305,6

1995

9

242,2

2339

11

162,9

229,5

15

93,6

890

ПРИЛОЖЕНИЕ 1 Программа расчета напряженности поля

uses crt,graph,omenu;

const f_fi= 1;

NBg = {blue}1;

NFg = {white}15;

HBg = {white}15;

HFg = {black}0;

BC = {black}0;

SC = {lightcyan}11;

col = 200;

delta_rm =90;

var

vf :text;

VMenu :OVMenu;

HMenu :OHMenu;

HVMenu :OHVMenu;

p,d,hb,em :real;

i,j,choice,errc,

a,x,Hmenu_choice,len :integer;

rm :longint;

ord :array[1..col] of real;

del :array[1..10] of real;

delstr,si,AStr,vstr :string;

ch,rk :char;

input_is :boolean;

{Процедуры ввода данных}

procedure input_value(xi,yi:integer; var zn:real);

begin

vstr:="";

while rk<>#13 DO begin

rk:=readkey;

if (((rk>#47)and(rk<#58))or(rk=#46))and(len<10) then begin

vstr:=vstr+rk;

len:=length(vstr);

gwritexy(xi+len,yi+1,rk,3,2);

end;

end;

val(vstr,zn,errc);

end;

procedure input;

begin

gwritexy(1,5,"Мощность: ",3,2); input_value(11,4,p); readln;

gwritexy(1,6,"К. у. антенны: ",3,2); input_value(1,6,d); readln;

gwritexy(1,7,"Высота передающей антенны: ",3,2); input_value(1,7,hb); readln;

end;

{Функция выводит осн. меню на экран и возвращает номер выбранного пункта меню}

Function ddt:integer;

begin

HVMenu.init;

gwritexy(0,1,"",0,0);

HVMenu.SetHorItems(00,00,80,01,NBg, NFg,HBg,HFg,BC,SC,1,1,BorderOn,ShadowOff," File | Антенна ");

HVMenu.SetVerItems(01,00,01,10,03,NBg,NFg,HBg,HFg,BC,SC,4,1,BorderOn,ShadowOff," Данные | Выход ");

HVMenu.SetVerItems(2,6,01,29,04,NBg,NFg,HBg,HFg,BC,Sc,

4,1,BorderOn,ShadowOff,

" Ант. решетка №1 - 1,3 | Ант. решетка №2 - 2 | Диполь ");

HMenu.EraseOK:=False;

X:=HVMenu.MenuResult(false,true);

ddt:=x;

end;

{Функции расчета напряженности}

function f_alfa:real;

begin

case choice of

1: f_alfa:=(1+2*cos(1.3*pi*sin(arctan((hb)/rm))))/3;

2: f_alfa:=(1+2*cos(2*pi*sin(arctan((hb)/rm))))/3;

3: f_alfa:=(cos(pi/2*sin(arctan((hb)/rm)))/cos(arctan((hb)/rm)));

end;

end;

function Rb:real;

begin

rb:=rm/sin(arctan(hb/rm));

end;

function E2:real;

begin

E2:=30*p*d*sqr(f_alfa)*sqr(f_fi)/sqr(Rb);

end;

{Заполнение массива ординат}

procedure ordinates;

begin

rm:=1;

for i:=1 to col do

begin

rm:=rm+delta_rm;

ord[i]:=1000*SQRT(E2); {х1000, т.к. ед. изм. - мВ/м}

end;

end;

{Максимальное значение напряженности}

procedure E_maximum;

var i:integer;

max:real;

begin

Max:=ord[1];

if col>1 then

for i:=2 to col do

if ord[i]>Max then Max:=ord[i];

if max=0 then max:=1;

Em:=max;

end;

{Сохранение результатов расчета в файл "results.txt"}

procedure ToFile;

begin

assign(vf,"results.txt");

rewrite(vf);

rm:=0;

for i:=1 to col do begin

rm:=rm+delta_rm;

writeln(vf,rm," m"," - ",ord[i]:0:5," mV/m");

end;

end;

{Инициализация графики}

procedure grinit;

var

grDriver: Integer;

grMode: Integer;

ErrCode: Integer;

begin

grDriver := Detect;

InitGraph(grDriver, grMode,"c:pgi");

ErrCode := GraphResult;

if ErrCode <> 0 then

Writeln("Graphics error:", GraphErrorMsg(ErrCode));

end;

procedure drawcoords; {Оси координат}

begin

setcolor(darkgray);

{Oy} line(100,445,100,30); line(99,445,99,30);

line(99,30,96,35); line(100,30,103,35);

outtextxy(25,23," Е, мВ/м");

{Ox} line(95,440,515,440); line(95,441,515,441);

line(515,440,510,437);line(515,441,510,444);

outtextxy(525,445,"R, м");

end;

procedure drawgrid;{Сетка}

begin

setcolor(lightgray);

{Горизонтальная}

j:=40;

for i:=1 to 10 do

begin

line(100,440-j,500,440-j);

j:=j+40

end;

{Вертикальная}

j:=round(80/ln(1.91));

for i:=1 to 6 do

begin

line(100+round(j),440,100+round(j),40);

j:=j+round(80/ln(i+1.8))

end;

end;

procedure values;{Разметка сетки}

begin

{По вертикали}

del[1]:=em/10; {Цена деления}

for i:=2 to 10 do

del[i]:=del[1]+del[i-1];

setcolor(darkgray);

outtextxy(90,445,"0");

j:=40;

for i:=1 to 10 do

begin

str(del[i]:0:1,delstr);

outtextxy(90-length(delstr)*8,438-j*i,delstr)

end;

{По горизонтали}

j:=95+round(80/ln(1.91));

outtextxy(j,445,"3");

j:=j+round(80/ln(2.8));

outtextxy(j,445,"6");

j:=j+round(80/ln(3.8));

outtextxy(j,445,"9");

j:=j+round(80/ln(4.8));

outtextxy(j,445,"12");

j:=j+round(80/ln(5.8));

outtextxy(j,445,"15");

j:=j+round(80/ln(6.8));

outtextxy(j,445,"18");

end;

{ Построение графика }

procedure drawgrafic;

var dlt:integer;

x1,x2,y1,y2:integer;

begin

setcolor(choice+1);

x1:=100-round(2/ln(1.91));;

for i:=1 to col do

begin

y1:=440-round(400*ord[i]/em);

y2:=440-round(400*ord[i+1]/em);

if (i>=1)and(i<40) then begin

x1:=x1+round(2/ln(1.91));

x2:=x1+round(2/ln(1.91));

end;

if (i>=40)and(i<80) then begin

x1:=x1+round(2/ln(3.71));

x2:=x1+round(2/ln(3.71));

end;

if (i>=80)and(i<120) then begin

x1:=x1+round(2/ln(5.51));

x2:=x1+round(2/ln(5.51));

end;

if (i>=120)and(i<160) then begin

x1:=x1+round(3/ln(7.31));

x2:=x1+round(3/ln(7.31));

end;

if (i>=160)and(i<=200) then begin

x1:=x1+round(4/ln(9.11));

x2:=x1+round(4/ln(9.11));

end;

line(x1,y1,x2,y2);

line(x1,y1-1,x2,y2-1);

line(x1,y1-2,x2,y2-2);

delay(20);

end;

end;

{Графические процедуры}

procedure drawing1st; {Инициализирует графику, подготавливает экран}

begin

grinit;

setbkcolor(15);

cleardevice;

setcolor(darkgray);

rectangle(10,10,getmaxx-10,getmaxy-10);

drawgrid;

drawcoords;

end;

procedure drawing2nd; {Выводит график на экран}

begin

drawgrafic;

readln;

closegraph;

end;

begin

ClrScr;

{ Input;}p:=100; d:=8; hb:=127;

grinit;

repeat

cleardevice;

i:=2;

repeat

a:=ddt;

until a<>0;

Hmenu_choice:=a div 100;

Case Hmenu_choice of

1: begin

choice:=a mod 100;

if choice=2 then break else begin

input;

input_is:=true;

end;

end;

2: if not(input_is) then begin

gwritexy(17,10,"! Сначала необходимо ввести даннные !",5,1);

ch:=readkey;

continue;

{end else begin

choice:=a mod 100;

Drawing1st;

Ordinates;

E_Maximum;

ToFile;

Values;

Drawing2nd; }

end;

end;

until false;

HVMenu.Done;

cleardevice;

closegraph;

write(p:1:2," ",d:1:2," ",hb:1:2);

end.

ПРИЛОЖЕНИЕ 2 Таблица измерения напряженности поля вблизи Усольского ретранслятора

Места проведения измерений

Расстояние

Направленная антенна

Круговая антенна

км

Е (видео), мкВ/м

Е (звук), мкВ/м

Е (видео), мкВ/м

Е (звук), мкВ/м

1.Тайтурка

11

178

112

316

200

2.Средний

11

280

126

708

354

3.Мальта

6

630

354

1412

708

4.Белореченск

7

707

446

1258

708

5.Тракт

2

4466

1995

25118

7080

6.Зеленый гор. ул.Энергетиков

4

17780

5010

2512

1412

7.Зеленый гор. ул.Фурманова

2,5

12590

4466

5012

1122

8.У- С. Горбольница

5,5

3980

1258

2238

1258

9.У-С. ул. Горького

6

3548

1122

1778

890

10. У- С. ул.Крупской

5

3548

1412

2623

1238

11. У- С. ж/д. переход

2,4

19952

7080

5623

2238

12. У- С. площадь

4

6310

1995

2512

1122

13. У- С. Комсомольский пр-т

5

2818

708

1778

890

14. У- С. мр-н Привокзальный

7

1995

708

708

400

15. У- С. Ленинский пр-т

8

1995

794

890

446

16. У- С. Восточ. окраина

9

2339

630

708

500

17. Тельма, Зап. окраина

15

890

354

446

224

Ошибка в тексте? Выдели её мышкой и нажми CTRL + Enter

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Помог сайт? Ставь лайк!