Что такое поляризационные приборы?

План.

  1. Вступление
  2. Что такое поляризационные приборы?

  3. Основная часть

Большая поляризационная установка.

Фотоэлектрический модуляционный поляриметр.

Полярископ-поляриметр ПКС-56.

Переносный малогабаритный поляриметр ИГ-86.

3. Приложение

Что такое поляризационные приборы?

Поляризационные приборы предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах и основаны на явлении поляризации света .

Их широко применяют:

  1. В кристаллографии и петрографии для исследования свойств кристаллов.
  2. В оптической промышленности для определения напряжений в стекле.
  3. В машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений.
  4. В медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов.
  5. Для изучения ряда явлений в электрическом и магнитном поле.

Большая поляризационная установка.

Рассмотрим приборы для определения внутренних натяжений.

Большая поляризационная установка изображена в приложение (на рис. 1), она предназначена для исследования напряжений в прозрачных моделях деталей машин и сооружений.

Конструктивно прибор выполнен в виде отдельных узлов: осветитель, в котором смонтированы детали 1—5; нагрузочное устройство, включающее образец 6; фотокамера, содержащая затвор с диафрагмой 10 и оптические детали 7—9 и 11—16, рассчитанная на фотопластинки размером 13´18 м.

Источник света 1 (кинопроекционная лампа К12 или ртутная лампа СВДШ-250) размещен в фокальной плоскости конденсора 2 (фокусное расстояние 180 мм). Параллельный пучок лучей после конденсора проходит через светофильтр 3, поляризатор 4 (поляроид, вклеенный между защитными стеклами), слюдяную пластинку 5 в 1/4 волны и падает на исследуемый образец 6.

После образца образовавшиеся в нем лучи o и e проходят вторую пластинку 7 в 1/4 волны, анализатор 8 (аналогичный поляризатору 7) и падают на объектив 9 (фокусное расстояние 400 мм), который изображает источник света в плоскости апертурной диафрагмы 10 (ирисовая диафрагма фотозатвора; раскрытие диафрагмы от 2 до 4 мм при ртутной лампе, раскрытие диафрагмы полное до 20 мм для кинопроекционной лампы). Одновременно объектив 9 проецирует изображение образца на матовое стекло 15 при помощи откидного зеркала 11 или на фотопластинку 12.

Интерференционную картину наблюдают через защитное стекло 14 и зеркало 16. Ее можно также проецировать с большим увеличением на экране 13.

Поляризатор, анализатор и пластинки в 1/4 волны вращаются в пределах 0¸90°; угол поворота отсчитывается по шкале с ценой деления 1°. Пластинки в 1/4 волны можно выводить из оптической схемы.

Фотоэлектрический модуляционный поляриметр.

Усовершенствование процесса поляризационных измерений и повышение точности достигается при использовании объективных методов измерения. Рассмотрим в качестве примера прибора такого типа схему фотоэлектрического поляриметра.

Фотоэлектрический модуляционный поляриметр изображенный (на рис. 2) позволяет измерять в исследуемом объекте разность фаз лучей о и е, меняющуюся во времени.

Лучистый поток от ртутной лампы 1 сверхвысокого давления проходит через иитерференционный светофильтр 2 (с максимумом пропускания при l=0,436 мкм и l=0,546 мкм), поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в лучах о и е составляют углы p/4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из кристалла ADP, вырезанную так, что ее плоскости перпендикулярны оптической оси.

Пластина 5 позволяет модулировать проходящий через нее лучистый поток, так как на кристалле ADP очень удобно реализовать эффект Поккельса. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы p/4 с прежним направлением оси. Следовательно, после приложения напряжения к пластине 5 проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5.

В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса. Следовательно, на выходе компенсатора 6 (в схеме используется компенсатор Сенармона) плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотоумножитель l0. Из фотоумножителя ток с основной частотой, соответствующей первой гармонике сигнала, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 1l до тех пор, пока в сигнале имеется первая гармоника. Остановка соответствует положению анализатора, при котором на фотоумножитель падает минимальный поток излучения. Самописец 7 фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.

Погрешность измерения составляет в среднем приблизительно 20".0

Полярископ-поляриметр ПКС-56.

Полярископ-поляриметр ПКС-56 изображенный в приложение (на рис. 3) служит для измерения двойного лучепреломления в стекле.

Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), пластинки 5 в 1/4 волны, анализатора 6 (аналогичного поляризатору 3) и светофильтра 7 (на длину волны 0,54 мкм).

Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.

Зная Db, можно определить из соотношения

где l — толщина образца в направлении просмотра.

При l=10 мм погрешность измерения составляет ±3×10-7. С увеличением l погрешность уменьшается.

Переносный малогабаритный поляриметр ИГ-86.

Переносный малогабаритный поляриметр ИГ-86 изображен (на рис. 4) предназначен для визуального исследования напряженного состояния изделий при использование оптически чувствительных покрытий. С его помощью наблюдается интерференционная картина в условиях плоской и круговой поляризации и измеряется оптическая разность хода, как методом сопоставления цветов, так и компенсационным методом.

Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 (аналогичный поляризатору 4) и попадает в зрительную трубу (сменное увеличение 2 и 10´) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы.

Предел измерения оптической разности хода — от 0 до 5 интерференционных порядков.

Погрешность измерения — 0,05 интерференционных порядков.

Габариты прибора 400´400´800 мм; масса около 2 кг.

Приложение

  1. Схема большой поляризационной установки.

Рис. 2. Схема фотоэлектрического модуляционного поляриметра

Рис. 3. Схема полярископа-поляриметра ПКС-56

Рис. 4. Переносный малогабаритный поляриметр ИГ-86

Ошибка в тексте? Выдели её мышкой и нажми CTRL + Enter

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Помог сайт? Ставь лайк!