БАЛАНСОВАЯ МОДЕЛЬ
Изучение балансовых моделей, представляющих собой одно из важнейших направлений и экономико-математических исследований, должно служить объектом изучения отдельной дисциплины. Наша цель – проиллюстрировать на примере балансовых расчетов применение основных понятий линейной алгебры.
ЛИНЕЙНАЯ БАЛАНСОВАЯ МОДЕЛЬ
Пусть рассматривается экономическая система, состоящая из n взаимосвязанных отраслей производства. Продукция каждой отрасли частично идет на внешнее потребление ( конечный продукт ), а частично используется в качестве сырья, полуфабрикатов или других средств производства в других отраслях, в том числе и в данной. Эту часть продукции называют производственным потреблением. Поэтому каждая из рассматриваемых отраслей выступает и как производитель продукции ( первый столбец таблицы 1 ) и как ее потребитель ( первая строка таблицы 1 ).
Обозначим через xiваловый выпускпродукции i-й отрасли за планируемый период и через yi – конечный продукт, идущий на внешнее для рассматриваемой системы потребление ( средства производства других экономических систем, потребление населения, образование запасов и т.д. ).
Таким образом, разность xi - yi составляет часть продукции i-й отрасли, предназначенную для внутрипроизводственного потребления. Будем в дальнейшем полагать, что баланс составляется не в натуральном, а в стоимостном разрезе.
Обозначим через xik часть продукции i-й отрасли, которая потребляется k-й отраслью, для обеспечения выпуска ее продукции в размере хk.
Таблица 1
№ потребление итого на конечный валовый
отрас. внутре продукт выпуск
производ. ( уi )(хi )
№ 1 2 … k … n потребление
отрас. ( е хik )
1 х11 х12 … х1k … х1n е х1k у1 х1
2х21 х22 … х2k … х2nе х2k у2 х2
… … … … … … … … … …
i хi1 xi2 … xik … xinе xik yi xi
… … … … … … … … … …
n xn1 xn2 … xnk … xnnе xnk yn xn
итого
произв.
затраты е хi1 е xi2 … е xik … е xin
в k-ю
отрасль
Очевидно, величины, расположенные в строках таблицы 1 связаны следующими балансовыми равенствами :
х1 - ( х11 + х12 + … + х1n ) = у1
х2 - ( х21 + х22 + … + х2n ) = у2 ( 1 )
. . . . . . . . . . . . . . . . . . . . . . . . .
xn - ( xn1 + xn2 + … + xnn ) = yn
Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период.
Будем снабжать штрихом ( х"ik , y"i и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде.
Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором :
_
у = ( у1 , у2 , … , yn ) , ( 2 )
а совокупность значений x1 , x2 , … , xn,определяющих валовый выпуск всех отраслей – вектор-планом :
_
x = ( x1 , x2 , … , xn ). ( 3 )
Зависимость между двумя этими векторами определяется балансовыми равенствами ( 1 ). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х, т.к. кроме искомых неизвестных хk, содержат n2 неизвестных xik , которые в свою очередь зависят от xk.
Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :
xik
aik = ––– ( i , k = 1 , 2 , … , n ).
xk
Величины aikназываются коэффициентами прямых затрат или технологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что
x"ik xik
––– = ––– = aik = const ( 4 )
x"k xk
Исходя из этого предложения имеем
xik = aikxk , ( 5 )
т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому выпуску, или, другими словами, зависят линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют условием линейности прямых затрат.
Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу
a11 a12 … a1k … a1n
a21 a22 … a2k … a2n
A= ………………….
ai1 ai2 … aik … ain
an1 an2 … ank … ann
которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу неотрицательной.
Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1
Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель :
x1 - ( a11x1 + a12x2 + … + a1nxn ) = y1
x2 - ( a21x1 + a22x2 + … + a2nxn ) = y2 ( 6 )
……………………………………
xn - ( an1x1 + an2x2 + … + annxn ) = yn ,
характеризующую баланс затрат - выпуска продукции, представленный в табл.1
Система уравнений ( 6 ) может быть записана компактнее, если использовать матричную форму записи уравнений:
_ _ _
Е·х - А·х = У , или окончательно
_ _
( Е - А )·х = У , ( 6" )
где Е – единичная матрица n-го порядка и
1-a11 -a12 … -a1n
E - A= -a21 1-a22 … -a2n
…………………
-an1 -an2 … 1-ann
Уравнения ( 6 ) содержат 2n переменных( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных.
Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ).
Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:
табл.2
№ отрас ПотреблениеИтого Конечный Валовый
№ затрат продукт выпуск
отрас 1 2
0.2 0.4
1 100 160 260 240 500
0.55 0.1
2 275 40 315 85 400
Итого затрат 575
в k-ю 375 200
отрасль … 575
Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2
Рассчитываем по данным этой таблицы коэффициенты прямых затрат:
100 160 275 40
а11 = –––– = 0.2 ; а12 = –––– = 0.4 ; а21 = –––– = 0.55 ; а22 = –––– = 0.1
500 400 500 400
Эти коэффициенты записаны в табл.2 в углах соответствующих клеток.
Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2
х1 - 0.2х1 - 0.4х2 = у1
х2 - 0.55х1 - 0.1х2 = у2
Эта система двух уравнений может быть использована для определения х1и х2 при заданных значениях у1и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д.
Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800 и т.д.
РЕШЕНИЕ БАЛАНСОВЫХ УРАВНЕНИЙ
С ПОМОЩЬЮ ОБРАТНОЙ МАТРИЦЫ.
КОЭФФИЦИЕНТЫ ПОЛНЫХ ЗАТРАТ.
Вернемся снова к рассмотрению балансового уравнения ( 6 ).
Первый вопрос, который возникает при его исследование, это вопрос о существование при заданном векторе У>0 неотрицательного решения х>0, т.е. о существовании вектор-плана, обеспечивающего данный ассортимент конечного продукта У. Будем называть такое решение уравнения ( 6" ) допустимым решением.
Заметим, что при любой неотрицательной матрице А утверждать существование неотрицательного решения нельзя.
Так, например, если
0.9 0.8 0.1 -0.8 и уравнение ( 6" )
А= , то Е - А =
0.6 0.9 -0.6 0.1
запишется в виде 0.1 -0.8 х1 у1 или в развернутой форме
-0.6 0.1 х2 у2
0.1х1 - 0.8х2 = у1 ( a )
-0.6х1 + 0.1х2 = у2
Сложив эти два уравнения почленно, получим уравнение
-0.5х1 - 0.7х2 = у1 + у2,
которое не может удовлетворяться неотрицательным значениям х1и х2, если только у1>0 и у2>0 ( кроме х1=х2=0 при у1=у2=0 ).
Наконец уравнение вообще может не иметь решений ( система ( 6 ) – несовместная ) или иметь бесчисленное множество решений ( система ( 6 ) – неопределенная ).
Следующая теорема, доказательство которой мы опускаем, дает ответ на поставленный вопрос.
Теорема. Если существует хоть один неотрицательный вектор х>0, удовлетворяющий неравенству ( Е - А )·х>0, т.е. если уравнение ( 6" ) имеет неотрицательное решение x>0, хотя бы для одного У>0, то оно имеет для любого У>0 единственное неотрицательное решение.
При этом оказывается, что обратная матрица ( Е - А ) будет обязательно неотрицательной.
Из способа образования матрицы затрат следует, что для предшествующего периода выполняется равенство ( Е -А )·х" = У", где вектор-план х" и ассортиментный вектор У" определяются по исполненному балансу за прошлый период, при этом У">0. Таким образом, уравнение ( 6" ) имеет одно неотрицательное решение x>0. На основании теоремы заключаем, что уравнение ( 6" ) всегда имеет допустимый план и матрица ( Е - А ) имеет обратную матрицу.
Обозначив обратную матрицу ( Е - А )-1 через S = || sik+ ||, запишем решение уравнения ( 6"" ) в виде
_ _
х = S·У ( 7 )
Если будет задан вектор – конечный продукт У и вычислена матрица S = ( E - A )-1, то по этой формуле может быть определен вектор-план х.
Решение ( 7 ) можно представить в развернутой форме:
x1 = S11y1 + S12y2 + … + S1nyn
x2 = S21y1 + S22y2 + … + S2nyn ( 8 )
………………………………
xn = Sn1y1 + Sn2y2 + … + Snnyn
ПОЛНЫЕ ВНУТРИПРОИЗВОДСТВЕННЫЕ
ЗАТРАТЫ.
Выясним экономический смысл элементов Sikматрицы S.
Пусть производится только единица конечного продукта 1-й отрасли, т.е.
1
_ 0
У1 = ;
0
Подставляя этот вектор в равенство ( 7 ), получим
1 S11
_ 0 S21 _
х = S : = : = S1
0 Sn1 0
_ 1
задавшись ассортиментным вектором У2 = 0 , получим
:
0
0 S12
_ 1 S22 _
х = S : = : = S2
0 Sn2
Аналогично, валовый выпуск х, необходимый для производства единицы конечного продукта k-й отрасли, составит
0 S1k
_ : S2k _
х = S 1 = : = Sk , ( 9 )
: Snk
0
т.е. k-й столбец матрицы S.
Из равенства ( 9 ) вытекает следующее:
Чтобы выпустить только единицу конечного продукта k-й отрасли, необходимо в 1-й отрасли выпустить х1=S1k, во 2-й х2=S2k и т.д., в i-й отрасли выпустить xi=Sik и, наконец, в n-й отрасли выпустить xn=Snk единиц продукции.
Так при этом виде конечного продукта производства только единица k-го продукта, то величины S1k,S2k, …, Sik, …, Snk, представляют собой коэффициенты полных затрат продукции 1-й, 2-й и т.д., n-й отраслей идущей на изготовление указанной единицы k-го продукта. Мы уже ввели раннее коэффициенты прямых затрат a1k, a2k, …, aik, …, ank на единицу продукции k-й отрасли, которые учитывали лишь ту часть продукции каждой отрасли, которая потребляется непосредственно k-й отраслью. Но, очевидно, необходимо обеспечить замкнутый производственный цикл. Если бы продукция i-й отрасли поступала бы только в k-ю отрасль в количестве aik, то производство k-й отрасли все равно не было бы обеспеченно, ибо потребовалось еще продукты 1-й отрасли ( a1k ), 2-й отрасли (a2k ) и т.д. А они в свою очередь не смогут работать, если не будут получать продукцию той же i-й отрасли ( ai1, ai2, … и т.д.). Проиллюстрируем сказанное на примере табл.2
Пусть нас не интересует выпуск для внешнего потребления продукции 2-й отрасли ( k=2 ) и мы хотим определить затраты продукции 1-й отрасли на единицу этой продукции. Из табл.2 находим, что на каждую единицу продукции 2-й отрасли ( х2=1 ) затрачивается: продукции 1-й отрасли a12=0.4 и 2-й отрасли a22=0.1.
Таковы будут прямые затраты. Пусть нужно изготовить у2=100. Можно ли для этого планировать выпуск 1-й отрасли х1=0.4100=40 ? Конечно, нельзя, т.к. необходимо учитывать, что 1-я отрасль часть своей продукции потребляет сама ( а11=0.2 ), и поэтому суммарный ее выпуск следует скорректировать: х1=40+0.240=48. Однако и эта цифра неверна, т.к. теперь уже следует исходить из нового объема продукции 1-й отрасли – х1"=48 и т.д. Но дело не только в этом. Согласно табл.2 продукция 2-й отрасли также необходима для производства и 1-й и 2-й отраслей и поэтому потребуется выпускать больше, чем у2=100. Но тогда возрастут потребности в продукции 1-й отрасли. Тогда достаточно обратиться к составленной систем уравнений, положив у1=0 и у2=1 ( см п.2 ):
0.8х1 - 0.4х2 = 0
-0.55х1 + 0.9х2 = 1
Решив эту систему, получим х1=0.8 и х2=1.5. Следовательно, для того чтобы изготовить единицу конечного продукта 2-й отрасли, необходимо в 1-й отрасли выпустить продукции х1=0.8. Эту величину называют коэффициентом полных затрат и обозначают ее через S12. Таким образом, если а12=0.4 характеризует затраты продукции 1-й отрасли на производство единицы продукции 2-й отрасли, используемые непосредственно во 2-й отрасли ( почему они и были названы прямые затраты ), то S12 учитывают совокупные затраты продукции 1-й отрасли как прямые ( а12 ), так и косвенные затраты, реализуемые через другие ( в данном случае через 1-ю же ) отрасли, но в конечном счете необходимые для обеспечения выпуска единицы конечного продукта 2-й отрасли. Эти косвенные затраты составляют S12-a12=0.8-0.4=0.4
Если коэффициент прямых затрат исчисляется на единицу валового выпуска, например а12=0.4 при х2=1, то коэффициент полных затрат рассчитывается на единицу конечного продукта.
Итак, величина Sikхарактеризует полные затраты продукции i-й отрасли для производства единицы конечного продукта k-й отрасли, включающие как прямые ( aik ), так и косвенные ( Sik - aik ) затраты.
Очевидно, что всегда Sik > aik.
Если необходимо выпустить уk единиц k-го конечного продукта, то соответствующий валовый выпуск каждой отрасли составит на основании системы ( 8 ):
x1 = S1k·yk, x2 = S2k·yk, …, xn = Snk·yk ,
что можно записать короче в виде:
_ _
x = Sk·yk ( 10 )
Наконец, если требуется выпустить набор конечного продукта, заданный ассортимент-
_ у1
ным вектором У = : , то валовый выпуск k-й отрасли xk, необходимый для его
уn
обеспечения, определится на основании равенств ( 10 ) как скалярное произведение столбца Sk на вектор У, т.е.
_ _
xk = Sk1y1 + Sk2y2 + … + Sknyn = Sk·y , ( 11 )
а весь вектор-план х найдется из формулы ( 7 ) как произведение матрицы S на вектор У.
Таким образом, подсчитав матрицу полных затрат S, можно по формулам ( 7 ) – ( 11 ) рассчитать валовый выпуск каждой отрасли и совокупный валовый выпуск всех отраслей при любом заданном ассортиментном векторе У.
Можно также определить, какое изменение в вектор-плане Dх = ( Dх1, Dх2, …, Dхn ) вызовет заданное изменение ассортиментного продукта DУ = ( Dу1, Dу2, …, Dуn ) по формуле:
_ _
Dх = S·DУ , ( 12 )
Приведем пример расчета коэффициентов полных затрат для балансовой табл.2. Мы имеем матрицу коэффициентов прямых затрат:
0.2 0.4
А =
0.55 0.1
Следовательно,
1 -0.2 -0.4 0.8 -0.4
Е - А = =
-0.55 1 -0.1 -0.55 0.9
Определитель этой матрицы
0.8 -0.4
D [ E - A ] = = 0.5
-0.55 0.9
Построим присоединенную матрицу ( Е - А )*. Имеем:
0.9 0.4
( Е - А )* = ,
0.55 0.8
откуда обратная матрица, представляющая собой таблицу коэффициентов полных затрат, будет следующей:
1 0.9 0.4 1.8 0.8
S = ( Е - А )-1 = ––– =
0.5 0.55 0.8 1.1 1.6
Из этой матрицы заключаем, что полные затраты продукции 1-й и 2-й отрасли, идущие на производство единицы конечного продукта 1-й отрасли, составляет S11=0.8 и S21=1.5. Сравнивая с прямыми затратами а11=0.2 и а21=0.55, устанавливаем, косвенные затраты в этом случае составят 1.8-0.2=1.6 и 1.1-0.55=0.55.
Аналогично, полные затраты 1-й и 2-й отрасли на производство единицы конечного продукта 2-й отрасли равны S12=0.8 и S22=1.5, откуда косвенные затраты составят 0.8-0.4=0.4 и 1.6-0.1=1.5.
Пусть требуется изготовить 480 единиц продукции 1-й и 170 единиц 2-й отраслей.
Тогда необходимый валовый выпуск х = х1 найдется из равенства ( 7 ):
х2
_ _ 1.8 0.8 480 1000
х = S·У = · =
1.1 1.6 170 800 .
ПОЛНЫЕ ЗАТРАТЫ ТРУДА, КАПИТАЛОВЛОЖЕНИЙ И Т.Д.
Расширим табл.1, включив в нее, кроме производительных затрат xik, затраты труда, капиталовложений и т.д. по каждой отрасли. Эти новые источники затрат впишутся в таблицу как новые n+1-я, n+2-я и т.д. дополнительные строки.
Обозначим затраты труда в k-ю отрасль через xn+1,k, и затраты капиталовложений – через xn+2,k ( где k = 1, 2, …, n ). Подобно тому как вводились прямые затраты aik,
xn+1,k
введем в рассмотрение коэффициенты прямых затрат труда an+1,k = ––––– , и
xk
xn+2,k
капиталовложений an+2,k = ––––– , представляющих собой расход соответствующего
xk
ресурса на единицу продукции, выпускаемую k-й отраслью. Включив эти коэффициенты в структурную матрицу ( т.е. дописав их в виде дополнительных строк ), получим прямоугольную матрицу коэффициентов прямых затрат:
a11 a12 … a1k … a1n
a21 a22 … a2k … a2n основная часть матрицы
…………………………………
А" = ai1 ai2 … aik … ain
…………………………………
an1 an2 … ank … ann
an+1,1 an+1,2 … an+1,k … an+1,n
an+2,1 an+2,2 … an+2,k … an+2,n дополнительные строки
При решение балансовых уравнений по-прежнему используется лишь основная часть матрицы ( структурная матрица А ). Однако при расчете на планируемый период затрат труда или капиталовложений, необходимых для выпуска данного конечного продукта, принимают участие дополнительные строки.
Так, пусть, например, производится единица продукта 1-й отрасли, т.е.
_ 1
У = 0
:
0 .
Для этого требуется валовый выпуск продукции
S11
_ _ S21
x = S1 = :
Sn1
Подсчитаем необходимые при этом затраты труда Sn+1,1. Очевидно, исходя из смысла коэффициентов an+1,k прямых затрат труда как затрат на единицу продукции k-й отрасли и величин S11, S12, …, S1n, характеризующих сколько единиц продукции необходимо выпустить в каждой отрасли, получим затраты труда непосредственно в 1-ю отрасль как an+1,1S11, во 2-ю – an+1,2S21 и т.д., наконец в n-ю отрасль an+1,nSn1. Суммарные затраты труда, связанные с производством единицы конечного продукта 1-й отрасли, составят:
_ _
Sn+1,1 = an+1,1S11 + an+1,2S21 + … + an+1,nSn1 = an+1S1 ,
т.е. равны скалярному произведению ( n+1 )-й строки расширенной матрицы А", котор