1.
*1. Говорят, что функция f(x) не убывает (не возрастает) на (a,b), если для любых точек x1<x2 из (a,b) справедливо неравенство f(x1)Ј f(x2) (f(x1)і f(x2)).
*2. Говорят, что функция f(x) возрастает (убывает) на (a,b), если x1<x2 из (a,b) справедливо неравенство f(x1)<f(x2) (f(x1)>f(x2)). В этом случае функцию называют монотонной на (a,b).
Т1. Дифференцируемая на (a,b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a,b), когда fў (x)і 0 (Ј 0) при любом xО (a,b).
Док-во: 1) Достаточность. Пусть fў (x)і 0 (Ј 0) всюду на (a,b). Рассмотрим любые x1<x2 из (a,b). Функция f(x) дифференцируема (и непрерывна) на [x1,x2]. По теореме Лагранжа: f(x2)-f(x1)=(x2-x1)fў (a), x1<a<x2. Т.к. (x2-x1)>0, fў (a)і 0 (Ј 0), f(x2)-f(x1)і 0 (Ј 0), значит, f(x) не убывает (не возрастает) на (a,b). 2) Необходимость. Пусть, например, f(x) не убывает на (a,b), xО (a,b), x+D xО (a,b), D x>0. Тогда (f(x+D x)-f(x))/D xі 0. Переходя к приделу при D xа 0, получим fў (x)і 0. Теорема доказана.
Т2. Для возрастания (убывания) f(x) на (a,b) достаточно, чтобы fў (x)>0 (<0) при любом xО (a,b). Док-во: Тоже что и в Т2.
Замечание1. Обратное к теореме 2 не имеет места, т.е. если f(x) возрастает (убывает) на (a,b), то не всегда fў (x)>0 (<0) при любом xО (a,b).
*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений или равно +Ґ или –Ґ .
Замечание 2. Непрерывные функции вертикальных асимптот не имеют.
*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при xа +Ґ (–Ґ ), если f(x)=kx+b+a (x), где
Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при xа +Ґ (–Ґ ), тогда и только тогда, когда существуют , , причем при xа +Ґ (–Ґ ) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при xа +Ґ , т.е. имеет место равенство f(x)=kx+b+a (x). Тогда . Переходя к пределу при xа +Ґ , получаем . Далее из f(x)=kx+b+a (x)а b=f(x)-kx-a (x). Переходя к пределу при xа +Ґ , получаем . Докажем обратное утверждение. Пусть пределы, указанные в теореме, существуют и конечны. Следовательно, f(x)–kx=b+a (x), где a (x)а 0, при xа +Ґ (–Ґ ). Отсюда и получаем представление f(x)=kx+b+a (x). Теорема доказана.
Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при xа +Ґ (–Ґ ) – правой (левой).
2.
*1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и fў (x0)=0.
*2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0.
Замечание 1. Необходимое условие экстремума не является достаточным.
Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0, кроме, быть может, самой точки x0, в которой она является непрерывной. Если при переходе x через x0 слева направо fў (x) меняет знак с + на –, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xО (a,b), x№ x0, (a,b) – достаточно малая окрестность точки x0. И пусть, например, производная меняет знак с + на –. Покажем что f(x0)>f(x). По теореме Лагранжа (применительно к отрезку [x,x0] или [x0,x]) f(x)–f(x0)=(x- x0)fў (a ), где a лежит между x0 или x: а) x< x0Ю x- x0<0, fў (a )>0Ю f(x)–f(x0)<0Ю f(x0)>f(x); б) x>x0Ю x–x0>0, fў (a )<0Ю f(x)–f(x0)<0Ю f(x0)>f(x).
Замечание 2. Если fў (x) не меняет знака при переходе через точку х0, то х0 не является точкой экстремума.
Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) fў ў ( x0)>0Ю f имеет в точке x0 локальный минимум. 2) fў ў ( x0)<0Ю f имеет в точке x0 локальный максимум.
3.
*1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a,b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.
*2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a,b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.
Т1. Пусть y=f(x) имеет на (a,b) конечную 2-ю производную. Тогда: 1) fў ў (x)>0, " xО (a,b)Ю график f(x) имеет на (a,b) выпуклость, направленную вниз; 2) ) fў ў (x)<0, " xО (a,b)Ю график f(x) имеет на (a,b) выпуклость, направленную вверх
*3. Точка (c,f(с)) графика функций f(x) называется точкой перегиба, если на (a,c) и (c,b) кривая y=f(x) имеет разные направления выпуклости ((a,b) – достаточно малая окрестность точки c).
Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то fў ў (c)=0.
Замечание1. Необходимое условие перегиба не является достаточным.
Замечание2. В точке перегиба вторая производная может не существовать.
Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cО (a,b), fў ў (c)=0. Если fў ў (x) имеет на (a,c), (c,b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).
Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и fў ў (c)=0, а fў ў ў (c)№ 0, тогда (c, f(c)) – точка перегиба графика f(x).
4.
*1. Первообразная от функции f(x) в данном интервале называется функция F(x), производная которой равна данной функции: Fў (x)=f(x).
T1. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым. Док-во: F(x) и Ф(х) – две первообразные от f(x), тождественно не равные между собой. Имеем Fў (x)=f(x), Фў (х)=f(x). Вычитая одно равенство из другого, получим [F(x)–Ф(х)]ў =0. Но если производная от некоторой функции (в нашем случае от F(x)–Ф(х)) тождественно равна нулю, то сама функция есть постоянная; Ю F(x)–Ф(х)=С.
*2. Неопределенным интегралом от данной функции f(x) называется множество всех его первообразных ,где Fў (x)=f(x).
5.
Свойства неопределенного интеграла:
- Производная НИ =подынтегральной функции; дифференциал от НИ равен подынтегральному выражению: ; . Док-во: ;
- НИ от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого: . Док-во: Обозначим . На основании первого св-ва: , откуда , т.е. .
- НИ от суммы конечного числа функций равен сумме интегралов от слагаемых функций: , где u, v, …,w-функции независимой переменной х. Док-во:
- Постоянный множитель можно выносить за знак НИ:, где с – константа. Док-во
Т2. (об инвариантности формул интегрирования): Пусть т f(x)dx=F(x)+C – какая-либо известная формула интегрирования и u=ф(х) – любая функция, имеющая непрерывную производную. Тогда т f(u)du=F(u)+C. Док-во: Из того, что т f(x)dx=F(x)+C, следует Fў (x)=f(x). Возьмем функцию F(u)=F[ф(x)]; для её дифференциала, в силу теоремы об инвариантности вида первого дифференциала функции, имеем: dF(u)=Fў (u)du=f(u)du. Отсюда т f(u)du=т dF(u)=f(u)+C.
6.
Метод замены переменных.
1) Подведение под знак дифференциала. Т1. Пусть функция y=f(x) определена и дифференцируема, пусть также существует f(x)=f(j (t)) тогда если функция f(x) имеет первообразную то справедлива формула: –формула замены переменных. Док-во: пусть F(x) для функции f(x), т.е. Fў (x)=f(x). Найдем первообразную для f(j (t)), [F(j (t))]ў t=Fў (x)(j (t)) j ў (t)=Fў (x) j ў (t)=f(x) j ў (t). т f(x) j ў (t)dt=f(j (t))+C. F(j (t))+C=[F(x)+C]|x=j (t)=т f(x)dx|x=j (t).
Замечание1. При интегрировании иногда целесообразно подбирать подстановку не в виде x=j (t), а в виде t=j (x).
2) Подведение под знак дифференциала. F(x)dx=g(j (x)) j ў (x)dx=g(u)du. т f(x)dx=т g(j (x)) j ў (x)dx=т g(u)du.
- dx=d(x+b), где b=const;
- dx=1/ad(ax), a№ 0;
- dx=1/ad(ax+b), a№ 0;
- фў (х)dx=dф(x);
- xdx=1/2 d(x2+b);
- sinxdx=d(-cosx);
- cosxdx=d(sinx);
Интегрирование по частям: т udv=uv-т vdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Ю udv=d(uv)-vduЮ (интегрируем) т udv=т d(uv)-т vdu или т udv=uv-т vdu.
7.
Интегрирование по частям: т udv=uv-т vdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Ю udv=d(uv)-vduЮ (интегрируем) т udv=т d(uv)-т vdu или т udv=uv-т vdu.
Интегрирование функций, содержащих квадратный трехчлен:
Первый интеграл табличного вида: т du/uk:
Второй интеграл сводится к нахождению интеграла: где u=x+p/2, a=, q-p2/4>0
– рекуррентная формула.
Интегрирование рациональных функций: R(x)=P(x)/Q(x), R(x)-рациональная функция, P(x) и Q(x)-многочлены. Дробь P(x)/Q(x) можно разложить в сумму простейших дробей, где Ai, Bi, Ci – постоянные, а именно: каждому множителю (x-a)k в представлении знаменателя Q(x) соответствует в разложении дроби P(x)/Q(x) на слагаемые сумма k простейших дробей типа а каждому множителю (x2+px+q)t соответствует сумма t простейших дробей типа . Таким образом при разложении знаменателя Q(x) на множители имеет место разложение дроби P(x)/Q(x) на слагаемые.
Правила интегрирования рациональных дробей:
- Если рац. дробь неправильная, то её представляют в виде суммы многочлена и неправильной дроби.
- Разлагают знаменатель правильной дроби на множетели.
Правую рац. дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рац. дроби сводят к интегрированию простейших дробей.
8.
Интегрирование тригонометрических функций:
- 1 Интеграл вида:
- R(sinx, cosx) – нечетная функция относительно sinx, то cosx=t.
- R(sinx, cosx) – нечетная функция относительно cosx, то sinx=t.
- R(sinx, cosx) – нечетная функция относительно sinx и cosx, то tgx=t.
- 1
- Оба показателя степени m и n – четные положительные числа: sinxcosx=1/2 sin2x; sin2x=1/2(1-cos2x); cos2x=1/2(1+cos2x).
- т tgmxdx и т ctgmxdx, где m-целое положительное число. tg2x=sec2x-1 или ctg2x=cosec2x –1.
- т tgmxsecnxdx и т ctgmxcosecnxdx, где n – четное положительное число. sec2x=1+tg2x или cosec2x=1+ctg2x.
- т sinmx*cosnxdx, т cosmx*cosnxdx, т sinmx*sinnxdx; sinacosb=1/2(sin(a+b)+sin(a-b)); cosacosb=1/2(cos(a+b)+cos(a-b)); sinasinb=1/2(cos(a-b)-cos(a+b));
9.
Интегрирование иррациональных функций:
- 1 т R(x, , ,…)dx, k-общий знаменатель дробей m/n, r/s…. x=tk, dx=ktk–1dt
- т R(x,, …)dx, , x=, dx=
- 1 Вынести 1/Ц a или 1/Ц -a. И выделим полные квадраты.
- Разбить на два интеграла.
- 1
1)p-целое число x=tS, где s- наименьшее общее кратное знаменателей у дробей m и n. 2) (m+1)/n –целое число: a+bxn=tS; 3) p+(m+1)/n-целое число: a-n+b=tS и где s- знаменатель дроби p.
10.
Определенный интеграл:
- интервал [a,b], в котором задана функция f(x), разбивается на n частичных интервалов при помощи точек a=x0<x1<…<xn–1<xn=b;
- Значение функции f(x I) в какой нибудь точке x iО [xi–xi–1] умножается на длину этого интервала xi–xi–1, т.е. составляется произведение f(x i)(xi–xi–1);
, где xi–xi–1=D xi;
I=– этот предел (если он существует) называется определенным интегралом, или интегралом от функции f(x) на интервале [a,b], обозначается
*1. Определенным интегралом называется предел интегральной суммы при стремлении к нулю длинны наибольшего частичного интеграла (в предположении, что предел существует).
Т1. (Необходимое условие существования интеграла): Если ОИ существует, т.е. функция f(x) интегрируема не [a,b], то f(x) ограничена на этом отрезке. Но этого не достаточно. Док-во: Функция Дирихле: