21. Тело движется равноускоренно с начальной скоростью v0. Определить ускорение тела, если за время t оно прошло путь S и его скорость v.
22. Материальная точка движется вдоль прямой так, что её ускорение линейно растёт и за первые 10 секунд достигает значения 5 м/с2. Определить в конце десятой секунды: 1) скорость точки; 2) пройденный точкой путь.
23. Кинетические уравнения движения двух материальных точек имеют вид x1 = A1*t + B1*t2 + C1*t3 и x2 = A2*t + B2*t2 + C2*t3, где B1 = 4 м/с2, C1 = – 3 м/с3, B2 = -2 м/с2 C2 = 1 м/c3. Определите момент времени, для которого ускорения этих точек будут равны.
24. Кинетические уравнения движения двух материальных точек имеют вид x1 = A1 + B1*t + C1*t2 и x2 = A2 + B2*t + C2*t2, где B1 = B2, C1 = – 2 м/с2, C2 = 1 м/c2. Определить: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорение a1 и a2 для этого момента.
25. Нормальное ускорение точки, движущейся по окружности радиусом r = 4 м, задается уравнением an = A + B*t + С*t2(A = 1 м/c2, B = 6 м/с3, С = 9 м/с4) Определите: 1) тангенсальное ускорение точки; 2) путь, пройденный точкой за время t = 5 сек. после начала движения; 3) полное ускорение для момента времени t2 = 1 секунде.
26. Зависимость пройденного телом пути sот времени tвыражается уравнением s= At- Bt2 + Ct3 (A= 2 м/с, В = 3 м/с2, С = 4 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени t- 2 с после начала движения 1) пройденный путь; 2) скорость; 3) ускорение.
27. Зависимость пройденного телом пути по окружности радиусом r= 3 м задается уравнением s= At2 + Bt(А = 0,4 м/с:, B = 0,1 м/с) Определите для момента времени t = 1 с после начала движения ускорение: 1) нормальное, 2) тангенциальное; 3) полное.
28. Точка движется в плоскости ху из положения с координатами х1 = v1 = 0 со скоростью v = ai+ bxj(а, b— постоянные, i, j — орты осей x и y). Определите: 1) уравнение траектории точки y(x); 2) форму траектории.
29. Радиус-вектор материальной точки изменяется со временем по закону r = t3i+ 3t2j, где i, j — орты осей х и у. Определите для момента времени t = 1 с: 1) модуль скорости; 2) модуль ускорения.
30. Радиус-вектор материальной точки изменяется со временем по закону r = 4t2i+ 3tj + 2k. Определите: 1) скорость v; 2) ускорение а; 3) модуль скорости в момент времени t= 2 с.
31. Движение материальной точки в плоскости ху описывается законом х = At, у = At (1 + Bt), где A и B— положительные постоянные. Определите: 1) уравнение траектории материальной точки y(х); 2) радиус-вектор r точки в зависимости от времени; 3) скорость vточки в зависимости от времени; 4) ускорение а точки в зависимости от времени.
32. Материальная точка начинает двигаться по окружности радуисом r = 12,5 с постоянным тангенсальным ускорением аτ = 0,5 см/с2. Определить: 1) момент времени, при котором вектор ускорения a образует с вектором скорости v угол α = 45; 2) путь, пройденный за это время движущейся точкой.
33. Линейная скорость v1 точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость v2точки, находящейся на 6 см ближе к его оси. Определите радиус диска.
34. Колесо вращается с постоянным угловым ускорением ε = 3рад/с. Определить радиус колеса, если через время t = 1 с после начала движения полное ускорение колеса равно а = 7,5 м/с2.
35. Якорь электродвигателя, имеющий частоту вращения n = 50, после выключения тока, сделав N = 628 оборотов, остановился. Определить угловое ускорение ε якоря.
36. Колесо автомобиля вращается равнозамедленно. За время t = 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.
37. Точка движется по окружности радиусом R = 15 см с постоянным тангенсальным ускорением aτ. К концу четвертого оборота после начала движения линейная скорость точки v1 = 15 см/с. Определить нормальное ускорение an2 точки через t 2 = 16 c после начала движения.
38. Диск радиусом R = 10 см вращается вокруг неподвижной оси так, что зависимость угла поворота диска от времени задается уравнением φ = A + Bt+ Сt2 + Dt3(B = 1 рад/с, C = 1 рад/с2, D = 1 рад/с3). Определите для точек на ободе диска к концу второй секунды после начала движения: 1) тангенциальное ускорение аτ; 2) нормальное ускорение аn; 3) полное ускорение а.
39. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = Аt2 (A = 0,5 рад/с2). Определить к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное aτ, нормальное an и полное ускорение а.
40. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением φ = Аt2 (A = 0,1 рад/с2). Определить полное ускорение a точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки v = 0,4 м/с.