61. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = A sin ωt и y = A sin 2ωt. Определите уравнение траектории точки и вычертите ее с нанесением масштаба.
62. Период затухающих колебаний T = 1 с, логарифмический декремент затухания Θ = 0,3, начальная фаза равна нулю. Смещение точки при t = 2Т составляет 5 см. Запишите уравнение движения этого колебания.
64. Амплитуда затухающих колебаний маятника за t = 2 мин уменьшилась в 2 раза. Определите коэффициент затухания δ.
65. Логарифмический декремент колебаний Θ маятника равен 0,01. Определите число N полных колебаний маятника до уменьшения его амплитуды в 3 раза.
66. Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась в 3 раза. Определите, во сколько раз она уменьшится за 4 мин.
67. Начальная амплитуда затухающих колебаний маятника A0 = 3 см. По истечении t1 = 10 с A1 = 1 см. Определите, через сколько времени амплитуда колебаний станет равной A2 = 0,3 см.
68. Тело массой m = 0,6 кг, подвешенное к спиральной пружине жесткостью k = 30 Н/м, совершает в некоторой среде упругие колебания. Логарифмический декремент колебаний Θ = 0,01. Определите: 1) время, за которое амплитуда колебаний уменьшится в 3 раза; 2) число полных колебаний, которые должна совершить гиря, чтобы произошло подобное уменьшение амплитуды.
69. Докажите, что выражения для коэффициента затухания δ = r/(2m) и циклической частоты ω = корень(ω02 - δ2)=корень(k/m - (r/2m)2) > 0 следуют из решения дифференциального уравнения для затухающих колебаний mx + rx + kx=0 (m — масса тела, r — коэффициент сопротивления, k — коэффициент упругости).
70. При наблюдении затухающих колебаний выяснилось, что для двух последовательных колебаний амплитуда второго меньше амплитуды первого на 60%. Период затухающих колебаний T = 0,5 с. Определите: 1) коэффициент затухания δ; 2) для тех же условий частоту ν0 незатухающих колебаний.
71. Тело массой m = 100 г, совершая затухающие колебания, за t = 1 мин потеряло 40% своей энергии. Определите коэффициент сопротивления r.
72. Дифференциальное уравнение для заряда в электрическом колебательном контуре задается в виде L(d2Q/dt2) + R (dQ/dt) +Q/C = 0. Найдите решение этого уравнения. Определите: 1) собственную частоту контура; 2) циклическую частоту ω; 3) коэффициент затухания δ.
73. За время, в течение которого система совершает N = 50 полных колебаний, амплитуда уменьшается в 2 раза. Определите добротность Q системы.
74. Частота свободных затухающих колебаний некоторой системы ω = 65 рад/с, а ее добротность Q = 2. Определите собственную частоту ω0 колебаний этой системы.
75. Колебательный контур состоит из катушки индуктивностью L = 10 мГн, конденсатора емкостью C = 0,1 мкФ и резистора сопротивлением R = 20 Ом. Определите, через сколько полных колебаний амплитуда тока в контуре уменьшится в е раз.
76. Колебательный контур содержит катушку индуктивностью L = 25 мГн, конденсатор емкостью C = 10 мкФ и резистор сопротивлением R = 1 Ом. Конденсатор заряжен количеством электричества Qm = 1 мКл. Определите: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсатора от времени.
77. Определите логарифмический декремент затухания при котором энергия колебательного контура за N = 5 полных колебаний уменьшается в n = 8 раз.
78. Колебательный контур содержит катушку индуктивностью L = 6 мкГн, конденсатор емкостью C = 10 нФ и резистор сопротивлением R=10 Ом. Определите для случая максимума тока отношение энергии магнитного поля катушки к энергии электрического поля.
79. Определите добротность Q колебательного контура, состоящего из катушки индуктивностью L = 2 мГн, конденсатора емкостью C = 0,2 мкФ и резистора сопротивлением R = 1 Ом.
80. Частота v затухающих колебаний в колебательном контуре с добротностью Q = 2500 равна 550 кГц. Определите время, за которое амплитуда силы тока в этом контуре уменьшится в 4 раза.