Элементарные частицы. Ускорители частиц

23.1. В ядерной физике принято число заряженных частиц, бомбардирующих мишень, характеризовать их общим зарядом, выраженным в микроампер-часах (мкА*ч). Какому числу заряженных частиц соответствует общий заряд q = 1 мкА*ч? Задачу решить для: а) электронов; б) α-частиц.

 

 

23.2. При упругом центральном столкновении нейтрона с неподвижным ядром замедляющего вещества кинетическая энергия нейтрона уменьшилась в 1,4 раза. Найти массу m ядер замедляющего вещества.


23.3. Какую часть первоначальной скорости будет составлять скорость нейтрона после упругого центрального столкновения с неподвижным ядром изотопа 2311Na ?

23.4. Для получения медленных нейтронов их пропускают через вещества, содержащие водород (например, парафин). Какую наибольшую часть своей кинетической энергии нейтрон массой m0 может передать: а) протону (масса m0); б) ядру атома свинца (масса 207m0)? Наибольшая часть передаваемой энергии соответствует упругому центральному столкновению.

23.5. Найти в предыдущей задаче распределение энергии между нейтроном и протоном, если столкновение неупругое. Нейтрон при каждом столкновении отклоняется в среднем на угол φ = 45°.

23.6. Нейтрон, обладающий энергией W0 = 4,6 МэВ, в результате столкновений с протонами замедляется. Сколько столкновений он должен испытать, чтобы его энергия уменьшилась до W = 0,23 эВ? Нейтрон отклоняется при каждом столкновении в среднем на угол φ = 45°.

23.7. Поток заряженных частиц влетает в однородное магнитное поле с индукцией В = 3 Тл. Скорость частиц v = 1,52 * 107 м/с и направлена перпендикулярно к направлению поля. Найти заряд q каждой частицы, если известно, что на нее действует сила F = 1,46*10-11 Н.


23.8. Заряженная частица влетает в однородное магнитное поле с индукцией В = 0,5 Тл и движется по окружности с радиусом R = 10 см. Скорость частицы v = 2,4 * 106 м/с. Найти для этой частицы отношение ее заряда к массе.

23.9. Электрон ускорен разностью потенциалов U = 180кВ. Учитывая поправки теории относительности, найти для этого электрона массу m, скорость v, кинетическую энергию W и отношение его заряда к массе. Какова скорость v' этого электрона без учета релятивистской поправки?


23.10. Мезон космических лучей имеет энергию W = З ГэВ. Энергия покоя мезона W0 = 100 МэВ. Какое расстояние l в атмосфере сможет пройти мезон за время его жизни τ по лабораторным часам? Собственное время жизни мезона τ0 = 2 мкс.

23.11. Мезон космических лучей имеет кинетическую энергию W = 7m0с2, где m0 — масса покоя мезона. Во сколько раз собственное время жизни τ0 мезона меньше времени его жизни τ по лабораторным часам?

23.12. Позитрон и электрон соединяются, образуя два фотона. Найти энергию hv каждого из фотонов, считая, что начальная энергия частиц ничтожно мала. Какова длина волны λ этих фотонов?

23.13. Электрон и позитрон образуются фотоном с энергией hv = 2,62МэВ. Какова была в момент возникновения полная кинетическая энергия W1 + W2 позитрона и электрона?

23.14. Электрон и позитрон, образованные фотоном с энергией hv = 5,7 МэВ, дают в камере Вильсона, помещенной в магнитное поле, траектории с радиусом кривизны R = 3см. Найти магнитную индукцию В поля.

23.15. Неподвижный нейтральный π-мезон, распадаясь, превращается в два фотона. Найти энергию hv каждого фотона. Масса покоя π-мезона m0(π) = 264,2m0, где m0 - масса покоя электрона.

23.16. Нейтрон и антинейтрон соединяются, образуя два фотона. Найти энергию hv каждого из фотонов, считая, что начальная энергия частиц ничтожно мала.

23.17. Неподвижный K0-мезон распадается на два заряженных π-мезона. Масса покоя K0-мезона m0(K0) = 965m0 , где т0 — масса покоя электрона; масса каждого π-мезона m(π) = 1,77m0(π), где т0(π) — его масса покоя. Найти массу покоя m0(π) π-мезонов и их скорость v в момент образования.


23.18. Вывести формулу, связывающую магнитную индукцию В поля циклотрона и частоту v приложенной к дуантам разности потенциалов. Найти частоту приложенной к дуантам разности потенциалов для дейтонов, протонов и α-частиц. Магнитная индукция поля В = 1,26 Тл.


23.19. Вывести формулу, связывающую энергию W вылетающих из циклотрона частиц и максимальный радиус кривизны R траектории частиц. Найти энергию W вылетающих из циклотрона дейтонов, протонов и α-частиц, если максимальный радиус кривизны R = 48,3 см; частота приложенной к дуантам разности потенциалов ν = 12 МГц.

23.20. Максимальный радиус кривизны траектории частиц в циклотроне R = 35 см; частота приложенной к дуантам разности потенциалов ν = 13,8 МГц. Найти магнитную индукцию В поля, необходимого для синхронной работы циклотрона, и максимальную энергию W вылетающих протонов.


 

Ошибка в тексте? Выдели её мышкой и нажми CTRL + Enter

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Помог сайт? Ставь лайк!