Введение
Цель курсового проектирования– систематизировать, закрепить, расширить теоретические знания, а также развить расчетно-графические навыки студентов. Основные требования, предъявляемые к создаваемой машине: высокая производительность, надежность, технологичность, минимальные габариты и масса, удобство в эксплуатации и экономичность. В проектируемых редукторах используются различные передачи. Передачи классифицируются:
По принципу действия:
а) с использованием сил трения (фрикционные, ременные).
б) работающие в результате возникновения давления между зубьями и кулачками.
Введение
Цель курсового проектирования– систематизировать, закрепить, расширить теоретические знания, а также развить расчетно-графические навыки студентов. Основные требования, предъявляемые к создаваемой машине: высокая производительность, надежность, технологичность, минимальные габариты и масса, удобство в эксплуатации и экономичность. В проектируемых редукторах используются различные передачи. Передачи классифицируются:
По принципу действия:
а) с использованием сил трения (фрикционные, ременные).
б) работающие в результате возникновения давления между зубьями и кулачками.
2.1. Выбор двигателя, кинематический расчет привода.
2.1.1. Требуемая мощность рабочей машины: Р рм = 4 кВт.
2.1.2. Определим общий коэффициент полезного действия (кпд) привода: η= η зп * ηпк * η кп, где
η зп = 0,85 – кпд червячной передачи,
η пк = 0,99 – кпд подшипников качения ( 2 пары),
η кп = 0,95 – кпд клиноременной передачи.
η = 0,85. 0,992. 0,95 = 0,79143075.
2.1.3. Определим требуемую мощность двигателя:
Рдв = Ррм / η = 4 / 0,79143075 = 5,054 кВт.
2.1.4. Определим номинальную мощность двигателя:
Р ном ³ Рдв ,Рном = 5,5 кВт.
2.1.5. Выбираем тип двигателя по табл. К9:
Двигатель асинхронный короткозамкнутый трехфазный общепромышленного применения, закрытый, обдуваемый типа 4АМ100L2У3, с частотой вращения 3000 об/мин,
n ном. = 2880 об/ мин.
2.2. Определение передаточного числа привода и его ступеней
2.2.1.Частота вращения выходного вала редуктора:
nрм = 55 об/мин.
2.2.2. Определим передаточное число привода:
U = nном1/nрм = 2880/55 =52,36.
2.2.3. Определим передаточные числа ступеней привода:
U = Uзп. Uоп = 20. 2,618
2.2.4. Определим максимальное допускаемое отклонение частоты вращения приводного вала рабочей машины nрм:
Δnрм= nрм *δ/100 = 55*5/ 100 = 2,75 об/мин.
2.2.5. Определим допускаемую частоту вращения приводного вала рабочей машины:
[nрм] = nрм + ∆ nрм = 55+2,75 = 57,75 об/мин.
2.2.6. Определим фактическое передаточное число привода:
Uф= nном/[nрм] = 2880/57,75 = 49,87.
2.2.7. Уточняем передаточные числа:
Uзп=10
Uоп=4,987
2.3. Определение силовых и кинематических параметров привода:
2.3.1. Мощность: Рдв=5,5 КВт
Быстроходный вал: Р1=Рдв*ηоп*ηпк=5,5*0,95*0,99=5,17275
Тихоходный вал: Р2=Р1*ηзп*ηпк=5,17275*0,85*0,99=4,3528
2.3.2. Частота вращения и угловая скорость:
Дв n=2880 (об/мин)
Б
Т
2.3.3. Вращающий момент Т, нм:
Дв.
Б 18,2366*2,4935*0,9*0,99=42,7675 (н*м)
Т 42,7675*20*0,85*0,99=719,17 (н*м)
3.1. Червячная передача.
3.1.1. Выбор материала червяка:
По табл. 3.1 определим марку стали для червяка:
Сталь 40Х с твердостью > 45 НRCэ, термообработка – улучшение и закалка ТВЧ.
По табл. 3.2 для стали 40Х – твердость 45…50HRCэ
sв =900 (Н/мм2), sт =750 ( Н/мм2 )
3.1.2. Выбор материала червячного колеса:
Марка материала червячного колеса зависит от скорости скольжения:
Vs.
Vs.
В соответствии со скоростью скольжения по табл. 3.5 из группы II принимаем бронзу БрА10Ж4Н4, полученную способом центробежного литья;
sв =700 (Н/мм2 ),sт =460 (Н/мм2 )
3.1.3. Определим допускаемые контактные напряжения [s]н и изгибные [s]F напряжения:
а) при твердости витков червяка ³ 45HRCэ
[s]н = (табл. 3.6),[ 2 ]
Сu=0,97 – коэффициент, учитывающий износ материалагде N – число циклов нагружения зубьев червячного колеса за весь срок службы – наработка. (см. 3.1. п. 2а) [2 ]
, где =6,047 =15*105
N2=573*6.047*15*103=51.973*106 циклов
=185 (н/мм2)
Б) коэффициент долговечности при расчете на изгиб:
=0,6447
Для нереверсивных передач:
=(0,08*700+0,25*460)0,6447=
=110,(н/мм2)
Табл. 3.7[ 2 ]
Дпред | HRCэ | |||||||
Червяк | Ст.40Х | 125 | У+ТВY | 45…50 | 900 | 750 | ||
Колесо | Ц | 700 | 460 | 497,32 | 110,24 |
4. Расчет червячной передачи.
4.1. Определим главный параметр – межосевое расстояние
аw=
Принимаем аw = 100 мм ( см. табл. 13.15)
4.2. Выбираем число витков червяка z1:
z1 зависит от uчер
uчер.=20, следовательно z1=2
4.3. Определим число зубьев червячного колеса:
z2 = z1* uчер.=2*20=40
Z2=40 |
4.4. Определим модуль зацепления:
m = (1.5…1.7)
Принимаем m = 4
4.5. Из условия жесткости определим коэффициент диаметра червяка:
q »(0.212…0.25)z2=(0.212…0.25)*40=8.48…10
Принимаем q = 10
4.6. Определим коэффициент смещения инструмента:
x = 0,714285
4.7. Определим фактическое передаточное число uф и проверим его отклонение Du от заданного u:
4.8. Определим фактическое значение межосевого расстояния:
(мм)
4.9. Определим основные геометрические параметры передачи:
а) Основные размеры червяка:
делительный диаметр: d1=g*m=10*4=40(мм)
начальный диаметр: dw1=m*(g+2)=4*(10+2*0)=40(мм)
диаметр вершин витков: da1=d1+2*4=48(мм)
диаметр впадин витков: df1=d1-2,4m=40-2,4*4=30,4(мм)
делительный угол подъема линии витков: =arctg(Z1/g)= arctg(2/10)=11,30
=11018!32!!
длина нарезаемой части червяка:
b1=(10+5,5*!X!+Z1)m+c
Так как х=0,714285, то С=0
в1=(10+5,5*0+2)*4+0=48(мм)
б) основные размеры венца червячного колеса:
делительный диаметр: d2=dw2=m*z2=4*40=160 (мм)
диаметр вершин зубьев: da2=d2+2m*(1+x)=160+2*4(1+0)=168 (мм)
наибольший диаметр колеса: dам2≤da2+6m/(z1+2)=168+6*4/2+2)=174(мм)
диаметр впадин зубьев: df2=d2-2m(1,2-x)=160-2*4(1,2-0)=150,4 (мм)
ширина венца: b2=0,355*aw=0,355*100=35,5 (мм)
b2=36 (мм)
радиусы закруглений зубьев: Ra=0,5d1-m=0,5*40-4=16 (мм)
Rf=0,5d1+1,2m=0,5*40+1,2*4=28,8(мм)
условный угол обхвата червяка венцом колеса 2d:
=1030
d!=da1-0,5m=48-0,5*4=46 (мм)
2.3.2. Частота вращения и угловая скорость:
Дв n=2880 (об/мин)
Б
Т
2.3.3. Вращающий момент Т, нм:
Дв.
Б 18,2366*2,4935*0,9*0,99=42,7675 (н*м)
Т 42,7675*20*0,85*0,99=719,17 (н*м)
3.1. Червячная передача.
3.1.1. Выбор материала червяка:
По табл. 3.1 определим марку стали для червяка:
Сталь 40Х с твердостью > 45 НRCэ, термообработка – улучшение и закалка ТВЧ.
По табл. 3.2 для стали 40Х – твердость 45…50HRCэ
sв =900 (Н/мм2), sт =750 ( Н/мм2 )
3.1.2. Выбор материала червячного колеса:
Марка материала червячного колеса зависит от скорости скольжения:
Vs.
Vs.
В соответствии со скоростью скольжения по табл. 3.5 из группы II принимаем бронзу БрА10Ж4Н4, полученную способом центробежного литья;
sв =700 (Н/мм2 ),sт =460 (Н/мм2 )
3.1.3. Определим допускаемые контактные напряжения [s]н и изгибные [s]F напряжения:
а) при твердости витков червяка ³ 45HRCэ
[s]н = (табл. 3.6),
Сu=0,97 – коэффициент, учитывающий износ материалагде N – число циклов нагружения зубьев червячного колеса за весь срок службы – наработка. (см. 3.1. п. 2а)
, где =6,047 =15*105
N2=573*6.047*15*103=51.973*106 циклов
=185 (н/мм2)
Б) коэффициент долговечности при расчете на изгиб:
=0,6447
Для нереверсивных передач:
=(0,08*700+0,25*460)0,6447=
=110,(н/мм2)
Табл. 3.7
Дпред | HRCэ | |||||||
Червяк | Ст.40Х | 125 | У+ТВY | 45…50 | 900 | 750 | ||
Колесо | Ц | 700 | 460 | 497,32 | 110,24 |
4. Расчет червячной передачи.
4.1. Определим главный параметр – межосевое расстояние
аw=
Принимаем аw = 100 мм ( см. табл. 13.15)
4.2. Выбираем число витков червяка z1:
z1 зависит от uчер
uчер.=20, следовательно z1=2
4.3. Определим число зубьев червячного колеса:
z2 = z1* uчер.=2*20=40
Z2=40 |
4.4. Определим модуль зацепления:
m = (1.5…1.7)
Принимаем m = 4
4.5. Из условия жесткости определим коэффициент диаметра червяка:
q »(0.212…0.25)z2=(0.212…0.25)*40=8.48…10
Принимаем q = 10
4.6. Определим коэффициент смещения инструмента:
x = 0,714285
4.7. Определим фактическое передаточное число uф и проверим его отклонение Du от заданного u:
4.8. Определим фактическое значение межосевого расстояния:
(мм)
4.9. Определим основные геометрические параметры передачи:
а) Основные размеры червяка:
делительный диаметр: d1=g*m=10*4=40(мм)
начальный диаметр: dw1=m*(g+2)=4*(10+2*0)=40(мм)
диаметр вершин витков: da1=d1+2*4=48(мм)
диаметр впадин витков: df1=d1-2,4m=40-2,4*4=30,4(мм)
делительный угол подъема линии витков: =arctg(Z1/g)= arctg(2/10)=11,30
=11018!32!!
длина нарезаемой части червяка:
b1=(10+5,5*!X!+Z1)m+c
Так как х=0,714285, то С=0
в1=(10+5,5*0+2)*4+0=48(мм)
б) основные размеры венца червячного колеса:
делительный диаметр: d2=dw2=m*z2=4*40=160 (мм)
диаметр вершин зубьев: da2=d2+2m*(1+x)=160+2*4(1+0)=168 (мм)
наибольший диаметр колеса: dам2≤da2+6m/(z1+2)=168+6*4/2+2)=174(мм)
диаметр впадин зубьев: df2=d2-2m(1,2-x)=160-2*4(1,2-0)=150,4 (мм)
ширина венца: b2=0,355*aw=0,355*100=35,5 (мм)
b2=36 (мм)
радиусы закруглений зубьев: Ra=0,5d1-m=0,5*40-4=16 (мм)
Rf=0,5d1+1,2m=0,5*40+1,2*4=28,8(мм)
условный угол обхвата червяка венцом колеса 2d:
=1030
d!=da1-0,5m=48-0,5*4=46 (мм)
Проверочный расчет:
4.10. Определим кпд червячной передачи:
где =11,3,угол трения, определяется в зависимости
от фактической скорости скольжения.
4.11. Проверяем контактные напряжения зубьев колеса sн:
где Ft= 2 T2103/d2
К – коэффициент нагрузки. Принимаем в зависимости от окружной скорости колеса:
т. к V2 м /с, то К=1
4.12. Проверяем напряжения изгиба зубьев колеса:
где YF2 – коэффициент формы зуба колеса, определяется по табл. 4.10(стр.74 ) в зависимости от эквивалентного числа зубьев колеса.
ZV2=Z2/COS3
Y
4.13. Составляем табличный ответ.(ТАБ.4.11)
6. Нагрузки валов редуктора.
6.1. Определение сил в червячном зацеплении:
Окружная: Ft
Ft
Радиальная: Fr
Осевая: Fa1=Ft=8997 (H) FA=Ft=2138 (H)
6.2. Определение консольных сил на выходные концы валов:
FM
Муфта на быстроходном валу. 800-1-55-1У2 ГОСТ 20884-81(К25)
С= 1542 FM=C=r=1542*3=4626
6.3. Силовая схема нагружения валов редуктора.
(СМ. приложение № 1)
Направление витков червяка – правое.
Направление вращения двигателя – правое.
6. Нагрузки валов редуктора.
6.1. Определение сил в червячном зацеплении:
Окружная: Ft
Ft
Радиальная: Fr
Осевая: Fa1=Ft=8997 (H) FA=Ft=2138 (H)
6.2. Определение консольных сил на выходные концы валов:
FM
С= 1542 FM1=C=r=1542*3=4626
FK МУФТ (НА ТИХ. ВАЛУ)=2488
FK (НА БЫСТРОХОДНОМ ВАЛ)=5440
6.3. Силовая схема нагружения валов редуктора.
(СМ. приложение № 1)
Направление витков червяка – правое.
Направление вращения двигателя – правое.
7. Проектный расчет валов. Эскизная компановка редуктора.
7.1. Выбор материала валов:
Червяк – Сталь 40Х.
Вал – Сталь 45.
7.2. Допускаемое напряжение на кручение.
2
7.3. Определение геометрических параметров ступеней валов:
I вал:
d1=
d1=30 ( MM)
l1=(1.2…1.5) *d1=( 1.2…1.5)*30=36…45
l1=40 (MM)
d2=d1+2t=30+2*2.2=3.4
d2=35 (MM)
l2= 1.5d2=1.5*35=45.5
l2=45(MM)
d3=d2+3.2r=35+3.2*2.5
d3=45(MM)
l3=ГРАФИЧЕСКИ
d4=d2=35 (MM)
l4=18.5=T l4≈20(MM)
II вал.
d1=
d1≈55 (MM)
l1=(1.0…1.5) d1=(1.0…1.5)55=55…80
l1≈70(MM)
d2=d1+2t=55+2*3=61
d2≈60(MM)
l2=1.25d2=1.25*60=75
l2≈80
d3=d2+3.2r=60+3.2*3.5=71.2
d3≈70(MM)
l3 Определяется Графически
d4=d2
l4=T=24≈25(MM)
d5=d3+3*f=70*3.25=77.5
d5≈80(MM)
l5-ОПРЕДЕЛЯЕТСЯ ГРАФИЧЕСКИ
7.4. Предварительный выбор подшипников качения:
(по ТАБ 7.2) К29 [ 2 ]выбираем
- Конические роликовые подшипники типа 7000, так как
- аw< 160 мм., средней серии; схема установки – в распор.
- I вал – подшипники № 7207
- основные параметры подшипников
II вал – подшипники № 7212
Размеры мм | Подшипники | ||||||||||||||
вал | d1 | d2 | d3 | d4 | Типо размеры | d*D*B(T) MM | Динам. Грузоп. Cr , KH | Статич. Групод. Cro, kH | |||||||
l1 | l2 | l3 | l4 | ||||||||||||
быстр | 30 | 35 | 45 | 35 | 7507 | 35*72* 24.5 | 53 | 40 | |||||||
40 | 45 | 20 | |||||||||||||
Тихох. | 55 | 60 | 70 | 60 | 7212 | 60*110*24 | 72.2 | 58.4 | |||||||
70 | 80 | 25 |
7.5. Эскизная компоновка редуктора (См. приложение№2)
X=8…10 Y > 4X= 32…40 R= dam
S =(0.1…0.2) D =(0.1…0.2)72 =7.2…14.4 (MM) h =
h1 = h2= a=( T+) a1=0.5(24.5+) =18.42 (MM)
a2=0.5(24+)=21.92 (MM)
8. Расчетная схема валов редуктора.
8.1. I вал – определение реакций в подшипниках.
ДАНО :
Ft | d1=40 (MM) |
Fr | ! OM=58 (MM) |
Fa=8997(H) | !б=175 (MM) |
Fop=862(H) |
- Вертик. Плоск.
а. Определяем опорные р-ции
Fr1*
ПРОВЕРКА :åY=0 RAY-Fr1+RBY=0609.3-3275+2665.7=0
Строим эпюру изгибающих моментов
Относительно оси Х :
В характерных сечениях, Н*М: МХ=0
МХ = RAY*
MX0 MX=
2.Горизонтальная плоскость
а) определяем опорные реакции , Н:
RBX=
RAX=2216.7 (H)
Проверка: åХ=0 FOП-RAX+Ft1-RBX=0
862-2216.7+2138-783.3=0
Б) Строим эпюру изгиб. моментов относительно
Оси У в характерных сечениях
Му1=0 МУ2=FОП*lоп=862*0.058=50 Н*М
МУ4=0 Му3= -RBX*=-783,3*0,0875=-68,5 ( H*M)
3.Строим эпюру крут. Моментов :
М к=Мz=
4.Определяем суммарные радиальные реакции, Н
RA
RB=
5.Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях, Н*М
М2=My2=50 H*M M3=
9. Проверочный расчет подшипников.
9.1. Быстроходный вал.
Подшипники установлены в распор. (см. рис. 9.1.б)
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям выбираем формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
9.2. Тихоходный вал.
Подшипники установлены враспор.
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям
Соответствующие формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
Подшипник пригоден.
10. Конструктивная компановка привода.
10.1. Конструирование червячного колеса.
Так как диаметр колеса небольшой, то необходимо его изготовить цельнокованным.
10.2.Конструирование червяка.
Червяк выполняется заодно с валом.
А) конец вала.
10.3. Выбор соединений.
Шпонки: на конце I вала – 8 ´7 ´30
под колесом червячным – 20´12´ 60
на конце II вала – 16´ 10 ´ 60
Расчет шпонки под колесом.
10.4. Крышки подшипниковых узлов:
Манжета армированная ГОСТ 8752-79
Крышки торцовые
Для защиты подшипников от продуктов износа червячных колес, а также излишнего полива маслом, подшипниковые узлы закроем с внутренней стороны корпуса маслозащитными шайбами.
Толщина шайб 1,2…2 мм., зазор между корпусом и наружным диаметром шайбы 0,2.ю..0,6 мм.
10.5. Конструирование корпуса редуктора.
10.5.1 Форма корпуса.
Корпус разъемный по оси колеса.
А) толщина стенок корпуса и ребер жесткости:
Принимаем
Б) диаметр болтов фланцев:
В) ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА МАСЛА
Г) ОПРЕДЕЛЕНИЕ УРОВНЯ МАСЛА
Д) КОНТРОЛЬ УРОВНЯ масла
Жезловый маслоуказатель ( рис. 10.63)
Е) слив масла
Пробка сливная (рис. 10.30)
Ж) отдушина (рис. 10.67)
Проверочные расчеты.
А) фундаментный фланец основания корпуса
Б) фланец подшипниковой бобышки крышки и основания корпуса.
Количество болтов на одну сторону корпуса – 2шт.
H2 – графически
В) соединительный фланец крышки и основания корпуса
Г) винты для крепления крышек торцовых:
Д) фланец для крышки смотрового окна:
Смазывание.
А) смазывание зубчатого зацепления – окунание, картерный непроточный способ.
Б) Сорт масла И-Т-Д-460 ГОСТ 17479.4-87 (табл. 10.29)
8.2 2-й вал
Дано: Ft2=8997 (H), Fr2=3275 (H),Fa2=2138(H)
lT=94 (MM), lM=149(MM),FM=6707(H),d2=160(MM)
1.ВЕРТИКАЛЬНАЯ ПЛОСКОСТЬ
А) ОПРЕДЕЛЯЕМ ОПОРНЫЕ РЕКЦИИ
ПРОВЕРКА:
Б) СТРОИМ ЭПЮРУ ИЗГИБАЮЩИХ МОМЕНТОВ
ОТНОСИТЕЛЬНО ОСИ Х :
2. ГОРИЗОНТАЛЬНАЯ ПЛОСКОСТЬ
а) ОПРЕДЕЛЯЕМ ОПОРНЫЕ РЕАКЦИИ
ПРОВЕРКА:
б) СТРОИМ ЭПЮРУ ИЗГИБАЮЩИХ МОМЕНТОВ ОТНОСИТЕЛЬНО ОСИ У:
в ХАРАКТЕРНЫХ СЕКЦИЯХ
3.ОПРЕДЕЛЯЕМ ЭПЮРУ КРУТЯЩИХ МОМЕНТОВ
4.ОПРЕДЕЛЯЕМ СУММАРНЫЕ РАДИАЛЬНЫЕ РЕАКЦИИ.
5.ОПРЕДЕЛЯЕМ СУММАРНЫЙ ИЗГИБАЮЩИЕ МОМЕНТЫ В НАИБОЛЕЕ НАГРУЖЕННЫХ СЕЧЕНИЯХ, Н*М
9. Проверочный расчет подшипников.
9.1. Быстроходный вал.
Подшипники установлены в распор. (см. рис. 9.1.б)
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям выбираем формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
9.2. Тихоходный вал.
w2=6,0,47 (с-1) ,FA2=2138 (H), R1=15131(H), R3=13297 (H)
ПОДШИПНИКИ 7212
Подшипники установлены в распор.
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям
Соответствующие формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
Подшипник пригоден.
10. Конструктивная компоновка привода.
10.1. Конструирование червячного колеса.
Так как диаметр колеса небольшой, то необходимо его изготовить цельнокованым.
10.2.Конструирование червяка.
Червяк выполняется заодно с валом.
А) конец вала.
10.3. Выбор соединений.
Шпонки: на конце I вала – 8 ´7 ´30
под колесом червячным – 20´12´ 60
на конце II вала – 16´ 10 ´ 60
Расчет шпонки под колесом.
, ГДЕ []см=110…190 ()
Ft2 =8997 (H)
10.4. Крышки подшипниковых узлов:
Манжета армированная ГОСТ 8752-79
d = 35 D=58 h1 = 10 d =60 D =85 h1 =10
Крышки торцовые
Для защиты подшипников от продуктов износа червячных колес, а также излишнего полива маслом, подшипниковые узлы закроем с внутренней стороны корпуса маслозащитными шайбами.
Толщина шайб 1,2…2 мм., зазор между корпусом и наружным диаметром шайбы 0,2.ю..0,6 мм.
10.5. Конструирование корпуса редуктора.
10.5.1 Форма корпуса.
Корпус разъемный по оси колеса.
А) толщина стенок корпуса и ребер жесткости:
=5.8
Принимаем 6 (MM)
Б) диаметр болтов фланцев:
d1= M14- фундаментный
d2=M12-крепления корпуса и крышки по бабкам
d3=M10 -//-//-//-//-//-//-//-// по фланцам
d4=M10- крепление торцевых крышек
d5=M6- крепление крышки смотрового мока
В) ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА МАСЛА
Г) ОПРЕДЕЛЕНИЕ УРОВНЯ МАСЛА
Д) КОНТРОЛЬ УРОВНЯ масла
Жезловый маслоуказатель ( рис. 10.63)
Е) слив масла
Пробка сливная (рис. 10.30)
Ж) отдушина (рис. 10.67)
Проверочные расчеты.
А) фундаментный фланец основания корпуса
Б) фланец подшипниковой бобышки крышки и основания корпуса.
Количество болтов на одну сторону корпуса – 2шт.
H2 – графически
В) соединительный фланец крышки и основания корпуса
Г) винты для крепления крышек торцовых:
Д) фланец для крышки смотрового окна:
Смазывание.
А) смазывание зубчатого зацепления – окунание, картерный непроточный способ.
Б) Сорт масла И-Т-Д-460 ГОСТ 17479.4-87 (табл. 10.29)
Параметры | значение | Параметры | Значение |
Межосевое расстояние aw | 87 | Диаметры червяка: Делительный d1 Начальный dw1 Вершин витков da1 Впадин витков d f1 | |
40 40 48 30,4 | |||
Модуль зацепления m | 4 | Диаметры колеса Делительный диаметр d2=dw Вершин зубьев da2 впадин зубьев d f2 наибольший dam | 160 168 150,4 174 |
Коэфициент диаметра червяка | 10 | ||
Делительный угол подьема витков червяка угол | 11 | ||
Угол обхвата червяка червяка венцом 2 | 103 | ||
Число ветков червяка z1 | 2 | ||
Число зубьев колеса z2 | 40 | ||
Ширина зубчатого венца колеса b2 | 36 | ||
Длина нарезаемой части червяка b1 | 48 |
Проверочный расчет | |||
Параметры | Допускаемое значение | Расчетное значение | Прим. |
Коэффициент полезного действия | 0,7…0,75 | 0,824 | |
Контактное напряжения | 250-25Vs | 997.32 |
Список использованной литературы.
- Н.Г. Куклин Детали Машин М.: Высшая школа ,- 1984
- А.Е. Шейнблинт Курсовое проектирование Детали Машин М.: Высшая школа,-1991г.
Оглавление
№ | Пункт | Лист |
1 | Введение | 2 |
2 | Пояснительная записка | 3-4 |
2.1 | Кинематический расчет привода | 4-8 |
3 | Выбор материала червяка | 9 |
4 | Расчет червячной передачи | 9 |
5 | Расчет ременной передачи (не производился) | |
6 | Нагрузки валов редуктора | 10 |
6.1 | Определение сил в зацеплении закрытой передачи | 11 |
6.2 | Определение консольных сил | 11 |
6.3 | Силовая схема нагружения валов редуктора | 11 |
7 | Проектный расчет валов | 12-13а |
7.1 | Выбор допускаемого напряжений на кручение | |
7.2 | Выбор допускаемых напряжений на кручение | |
7.3 | Определение геометрических параметров ступеней валов | |
7.4 | Пре6дварительный выбор подшипников качения | |
7.5 | Эскизная компоновка редуктора | |
8 | Расчетная схема валов редуктора | 14-15 |
8.1 | Определение реакций в опорах подшипника | |
8.2 | Построение эпюр изгибающих и крутящих моментов | |
9 | Проверочный расчет подшипников качения | 16-17 |
10 | Конструктивная компоновка привода | 18-20 |
11 | Проверочные расчеты | 21-24 |
12 | Технический уровень редуктора | 24 |
13 | Список использованной литературы | 25 |
14 | Приложения | 10;14а;15 |
15 | Графическая часть |
Изм. | Лист | Подпись | Дата | ||||||
РАЗРАБОТАЛ | Богданов В.О. | Стадия | Лист | Листов | |||||
Проверил. | Гоголенко | ||||||||
. | |||||||||
Н. Контр. | Шиляева | ||||||||
Утвердил. |
2.1. Выбор двигателя, кинематический расчет привода.
2.1.1. Требуемая мощность рабочей машины: Р рм = 4 кВт.
2.1.2. Определим общий коэффициент полезного действия (кпд) привода: η= η зп * ηпк * η кп, где
η зп = 0,85 – кпд червячной передачи,
η пк = 0,99 – кпд подшипников качения ( 2 пары),
η кп = 0,95 – кпд клиноременной передачи.
η = 0,85. 0,992. 0,95 = 0,79143075.
2.1.3. Определим требуемую мощность двигателя:
Рдв = Ррм / η = 4 / 0,79143075 = 5,054 кВт.
2.1.4. Определим номинальную мощность двигателя:
Р ном ³ Рдв ,Рном = 5,5 кВт.
2.1.5. Выбираем тип двигателя по табл. К9:
Двигатель асинхронный короткозамкнутый трехфазный общепромышленного применения, закрытый, обдуваемый типа 4АМ100L2У3, с частотой вращения 3000 об/мин,
n ном. = 2880 об/ мин.
2.2. Определение передаточного числа привода и его ступеней
2.2.1.Частота вращения выходного вала редуктора:
nрм = 55 об/мин.
2.2.2. Определим передаточное число привода:
U = nном1/nрм = 2880/55 =52,36.
2.2.3. Определим передаточные числа ступеней привода:
U = Uзп. Uоп = 20. 2,618
2.2.4. Определим максимальное допускаемое отклонение частоты вращения приводного вала рабочей машины nрм:
Δnрм= nрм *δ/100 = 55*5/ 100 = 2,75 об/мин.
2.2.5. Определим допускаемую частоту вращения приводного вала рабочей машины:
[nрм] = nрм + ∆ nрм = 55+2,75 = 57,75 об/мин.
2.2.6. Определим фактическое передаточное число привода:
Uф= nном/[nрм] = 2880/57,75 = 49,87.
2.2.7. Уточняем передаточные числа:
Uзп=10
Uоп=4,987
2.3. Определение силовых и кинематических параметров привода:
2.3.1. Мощность: Рдв=5,5 (КВт)
Быстроходный вал: Р1=Рдв*ηоп*ηпк=5,5*0,95*0,99=5,17275
Тихоходный вал: Р2=Р1*ηзп*ηпк=5,17275*0,85*0,99=4,3528